436 research outputs found

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    Multi-capacity combinatorial ordering GA in application to cloud resources allocation and efficient virtual machines consolidation

    Get PDF
    This paper describes a novel approach making use of genetic algorithms to find optimal solutions for multi-dimensional vector bin packing problems with the goal to improve cloud resource allocation and Virtual Machines (VMs) consolidation. Two algorithms, namely Combinatorial Ordering First-Fit Genetic Algorithm (COFFGA) and Combinatorial Ordering Next Fit Genetic Algorithm (CONFGA) have been developed for that and combined. The proposed hybrid algorithm targets to minimise the total number of running servers and resources wastage per server. The solutions obtained by the new algorithms are compared with latest solutions from literature. The results show that the proposed algorithm COFFGA outperforms other previous multi-dimension vector bin packing heuristics such as Permutation Pack (PP), First Fit (FF) and First Fit Decreasing (FFD) by 4%, 34%, and 39%, respectively. It also achieved better performance than the existing genetic algorithm for multi-capacity resources virtual machine consolidation (RGGA) in terms of performance and robustness. A thorough explanation for the improved performance of the newly proposed algorithm is given

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    Full text link
    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by checking the load of the physical host and the user constraints of the VMs. Second optimization of placed VMs is done by using a hybrid genetic algorithm based on fitness function. Our simulation results show that the proposed algorithm outperforms existing methods and enhances the rate of resource utilization through accommodating more number of virtual machines in a physical hos

    A Survey of Virtual Machine Placement Techniques and VM Selection Policies in Cloud Datacenter

    Get PDF
    The large scale virtualized data centers have been established due to the requirement of rapid growth in computational power driven by cloud computing model . The high energy consumption of such data centers is becoming more and more serious problem .In order to reduce the energy consumption, server consolidation techniques are used .But aggressive consolidation of VMs can lead to performance degradation. Hence another problem arise that is, the Service Level Agreement(SLA) violation. The optimized consolidation is achieved through optimized VM placement and VM selection policies . A comparative study of virtual machine placement and VM selection policies are presented in this paper for improving the energy efficiency

    A Vector-Based Approach to Virtual Machine Arrangement

    Get PDF
    Cloud based data centres benefit from minimizing operating costs and service level agreement violations. Vector-based data centre management policies have been shown to assist with these goals. Vector-based data centre management policies arrange virtual machines in a data centre to minimize the number of hosts being used which translates to greater power efficiency and reduced costs for the data centre overall. I propose an improved vector-based virtual machine arrangement algorithm with two novel additions, namely a technique that changes what it means for a host to be balanced and a concept that excludes undesirable target hosts, thereby improving the arrangement process. Experiments conducted with a simulated data centre demonstrate the effectiveness of this algorithm and compares it to existing algorithms

    Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    Get PDF
    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by checking the load of the physical host and the user constraints of the VMs. Second optimization of placed VMs is done by using a hybrid genetic algorithm based on fitness function. Our simulation results show that the proposed algorithm outperforms existing methods and enhances the rate of resource utilization through accommodating more number of virtual machines in a physical hos
    • …
    corecore