17,472 research outputs found

    Direct and Inverse Computational Methods for Electromagnetic Scattering in Biological Diagnostics

    Full text link
    Scattering theory has had a major roll in twentieth century mathematical physics. Mathematical modeling and algorithms of direct,- and inverse electromagnetic scattering formulation due to biological tissues are investigated. The algorithms are used for a model based illustration technique within the microwave range. A number of methods is given to solve the inverse electromagnetic scattering problem in which the nonlinear and ill-posed nature of the problem are acknowledged.Comment: 61 pages, 5 figure

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems

    High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

    Get PDF
    We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The construction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation

    Fast and Accurate Computation of Time-Domain Acoustic Scattering Problems with Exact Nonreflecting Boundary Conditions

    Full text link
    This paper is concerned with fast and accurate computation of exterior wave equations truncated via exact circular or spherical nonreflecting boundary conditions (NRBCs, which are known to be nonlocal in both time and space). We first derive analytic expressions for the underlying convolution kernels, which allow for a rapid and accurate evaluation of the convolution with O(Nt)O(N_t) operations over NtN_t successive time steps. To handle the onlocality in space, we introduce the notion of boundary perturbation, which enables us to handle general bounded scatters by solving a sequence of wave equations in a regular domain. We propose an efficient spectral-Galerkin solver with Newmark's time integration for the truncated wave equation in the regular domain. We also provide ample numerical results to show high-order accuracy of NRBCs and efficiency of the proposed scheme.Comment: 22 pages with 9 figure

    A simple and efficient BEM implementation of quasistatic linear visco-elasticity

    Get PDF
    A simple, yet efficient procedure to solve quasistatic problems of special linear visco-elastic solids at small strains with equal rheological response in all tensorial components, utilizing boundary element method (BEM), is introduced. This procedure is based on the implicit discretisation in time (the so-called Rothe method) combined with a simple "algebraic" transformation of variables, leading to a numerically stable procedure (proved explicitly by discrete energy estimates), which can be easily implemented in a BEM code to solve initial-boundary value visco-elastic problems by using the Kelvin elastostatic fundamental solution only. It is worth mentioning that no inverse Laplace transform is required here. The formulation is straightforward for both 2D and 3D problems involving unilateral frictionless contact. Although the focus is to the simplest Kelvin-Voigt rheology, a generalization to Maxwell, Boltzmann, Jeffreys, and Burgers rheologies is proposed, discussed, and implemented in the BEM code too. A few 2D and 3D initial-boundary value problems, one of them with unilateral frictionless contact, are solved numerically
    corecore