8,705 research outputs found

    Generating Finite Dimensional Integrable Nonlinear Dynamical Systems

    Full text link
    In this article, we present a brief overview of some of the recent progress made in identifying and generating finite dimensional integrable nonlinear dynamical systems, exhibiting interesting oscillatory and other solution properties, including quantum aspects. Particularly we concentrate on Lienard type nonlinear oscillators and their generalizations and coupled versions. Specific systems include Mathews-Lakshmanan oscillators, modified Emden equations, isochronous oscillators and generalizations. Nonstandard Lagrangian and Hamiltonian formulations of some of these systems are also briefly touched upon. Nonlocal transformations and linearization aspects are also discussed.Comment: To appear in Eur. Phys. J - ST 222, 665 (2013

    Exact solutions of semilinear radial wave equations in n dimensions

    Full text link
    Exact solutions are derived for an n-dimensional radial wave equation with a general power nonlinearity. The method, which is applicable more generally to other nonlinear PDEs, involves an ansatz technique to solve a first-order PDE system of group-invariant variables given by group foliations of the wave equation, using the one-dimensional admitted point symmetry groups. (These groups comprise scalings and time translations, admitted for any nonlinearity power, in addition to space-time inversions admitted for a particular conformal nonlinearity power). This is shown to yield not only group-invariant solutions as derived by standard symmetry reduction, but also other exact solutions of a more general form. In particular, solutions with interesting analytical behavior connected with blow ups as well as static monopoles are obtained.Comment: 29 pages, 1 figure. Published version with minor correction

    Analytic and Asymptotic Methods for Nonlinear Singularity Analysis: a Review and Extensions of Tests for the Painlev\'e Property

    Full text link
    The integrability (solvability via an associated single-valued linear problem) of a differential equation is closely related to the singularity structure of its solutions. In particular, there is strong evidence that all integrable equations have the Painlev\'e property, that is, all solutions are single-valued around all movable singularities. In this expository article, we review methods for analysing such singularity structure. In particular, we describe well known techniques of nonlinear regular-singular-type analysis, i.e. the Painlev\'e tests for ordinary and partial differential equations. Then we discuss methods of obtaining sufficiency conditions for the Painlev\'e property. Recently, extensions of \textit{irregular} singularity analysis to nonlinear equations have been achieved. Also, new asymptotic limits of differential equations preserving the Painlev\'e property have been found. We discuss these also.Comment: 40 pages in LaTeX2e. To appear in the Proceedings of the CIMPA Summer School on "Nonlinear Systems," Pondicherry, India, January 1996, (eds) B. Grammaticos and K. Tamizhman

    Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials

    Get PDF
    According to the linear theory of elasticity, there exists a combination of different orders of stress singularity at a V-notch tip of bonded dissimilar materials. The singularity reflects a strong stress concentration near the sharp V-notches. In this paper, a new way is proposed in order to determine the orders of singularity for two-dimensional V-notch problems. Firstly, on the basis of an asymptotic stress field in terms of radial coordinates at the V-notch tip, the governing equations of the elastic theory are transformed into an eigenvalue problem of ordinary differential equations (ODEs) with respect to the circumferential coordinate h around the notch tip. Then the interpolating matrix method established by the first author is further developed to solve the general eigenvalue problem. Hence, the singularity orders of the V-notch problem are determined through solving the corresponding ODEs by means of the interpolating matrix method. Meanwhile, the associated eigenvectors of the displacement and stress fields near the V-notches are also obtained. These functions are essential in calculating the amplitude of the stress field described as generalized stress intensity factors of the V-notches. The present method is also available to deal with the plane V-notch problems in bonded orthotropic multi-material. Finally, numerical examples are presented to illustrate the accuracy and the effectiveness of the method
    • …
    corecore