4,212 research outputs found

    Tactical Problems in Vehicle Routing Applications

    Get PDF
    The class of Vehicle Routing Problems (VRPs) is one the most studied topics in the Operations Research community. The vast majority of the published papers focus on single-period problems, with a few branches of the literature considering multiperiod generalisations. All of these problems though, consider a short horizon and aim at optimising the decisions at an operational level, i.e. that will have to be taken in the near future. One step above are tactical problems, i.e. problems concerning a longer time horizon. Tactical problems are of a fundamental importance as they directly influence the daily operations, and therefore a part of the incurred costs, for a long time. The main focus of this thesis is to study tactical problems arising in routing applications. The first problem considered concerns the design of a fleet of vehicles. Transportation providers often have to design a fleet that will be used for daily operations across a long-time span. Trucks used for transportation are very expensive to purchase, maintain or hire. On the other side, the composition of the fleet strongly influences the daily plans, and therefore costs such as fuel or drivers’ wages. Balancing these two components is challenging, and optimisation models can lead to substantial savings or provide a useful basis for informed decisions. The second problem presented focuses on the use of a split deliveries policy in multi-period routing problems. It is known that the combined optimisation of delivery scheduling and routing can be very beneficial, and lead to significant reductions in costs. However, it also adds complexity to the model. The same is true when split deliveries are introduced. The problem studied considers the possibility of splitting the deliveries over different days. An analysis, both theoretical and numerical, of the impact of this approach on the overall cost is provided. Finally, a districting problem for routing applications is considered. These types of problems typically arise when transportation providers wish to increase their service consistency. There are several reasons a company may wish to do so: to strengthen the customer-driver relationship, to increase drivers’ familiarity with their service area, or, to simplify the management of the service area. A typical approach, considered here, is to divide the area under consideration in sectors that will be subsequently assigned to specific drivers. This type of problem is inherently of a multi-period and tactical nature. A new formulation is proposed, integrating standard routing models into the design of territories. This makes it possible to investigate how operational constraints and other requirements, such as having a fair workload division amongst drivers, influence the effectiveness of the approach. An analysis of the cost of districting, in terms of increased routing cost and decreased routing flexibility, and of several operational constraints, is presented

    A Literature Review On Combining Heuristics and Exact Algorithms in Combinatorial Optimization

    Get PDF
    There are several approaches for solving hard optimization problems. Mathematical programming techniques such as (integer) linear programming-based methods and metaheuristic approaches are two extremely effective streams for combinatorial problems. Different research streams, more or less in isolation from one another, created these two. Only several years ago, many scholars noticed the advantages and enormous potential of building hybrids of combining mathematical programming methodologies and metaheuristics. In reality, many problems can be solved much better by exploiting synergies between these approaches than by “pure” classical algorithms. The key question is how to integrate mathematical programming methods and metaheuristics to achieve such benefits. This paper reviews existing techniques for such combinations and provides examples of using them for vehicle routing problems

    Optimizing the inventorying and distribution of chemical fluids: An innovative nested column generation approach

    Get PDF
    Vendor-managed-inventory is a successful business practices based on the cooperation between a supplier and its customers in which demand and inventory information from the customers are shared with the supplier. This practice is gaining popularity in the chemical industry and relies on the inventory-routing-problem, which integrates inventory management, vehicle routing, and delivery scheduling decisions. This one is a difficult combinatorial optimization problem both theoretically and practically. However, because of the large expenses involved in distribution and inventorying of chemical products, it is attractive to make use of optimization tools for exploiting as many degrees of freedom as possible with the goal of minimizing both distribution and inventorying costs. Consequently, we propose a nested column generation algorithm for solving an inventorying and distribution problem that models the delivery of several chemicals fluids. The approach is building on a column generation & incomplete branch-and-price algorithm in which for each delivery route, the delivery patterns of fluids are also determined by column generation. We detail the implementation and provide computational results for realistic test instances.Fil: Coccola, Mariana Evangelina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; ArgentinaFil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; Argentin

    Rich Vehicle Routing Problems and Applications

    Get PDF

    Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation

    Get PDF
    This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arbores- cence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms. Powerful new cuts expressed over a very large set of variables could be added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very signiÂŻcant improvements over previous algorithms. Several open instances could be solved to optimalityNo keywords;

    An exact approach for the pollution-routing problem

    Get PDF
    • …
    corecore