430 research outputs found

    Solutions of System of Fractional Partial Differential Equations

    Get PDF
    In this paper, system of fractional partial differential equation which has numerous applications in many fields of science is considered. Adomian decomposition method, a novel method is used to solve these type of equations. The solutions are derived in convergent series form which shows the effectiveness of the method for solving wide variety of fractional differential equations

    Laplace Adomian Decomposition and Modify Laplace Adomian Decomposition Methods for Solving Linear Volterra Integro-Fractional Differential Equations with Constant Multi-Time Retarded Delay

    Get PDF
         في هذا العمل نقدم تحويلات لابلاس مع طريقة أدوميان التحليلية المتسلسلة و كما اننا نعدل طريقة أدوميان التحليلية للمرة الاولى لحل معادلات فولتيرا التفاضلية-التكاملية الخطيه للرتب الكسرية كما في مفهوم كابوتو مع التأخير الحدي المتضاعف الثابت. هذه الطريقة تعتمد على مزيج ممتاز من طريقة تحويلات لابلاس، طريقة تحديد المتسلسلات، طريقة متعددات الحدود لادوميان مع التعديلات. أن التقنية المستخدمة تحول التأخير الحدي للمعادلات التفاضلية ذات التكاملات الكسرية الى معادلات جبرية متكررة عندما تكون نواة الفروق من نوع المنحل البسيط. و أخيراَ أعطيت أمثلة لتوضيح فعالية و ديقة الطرق المقترحة.In this work, we present Laplace transform with series Adomian decomposition and modify Adomian decomposition methods for the first time to solve linear Volterra integro-differential equations of the fractional order in Caputo sense with constant multi-time Retarded delay. This method is primarily based on the elegant mixture of Laplace transform method, series expansion method and Adomian polynomial with modifications. The proposed technique will transform the multi-term delay integro-fractional differential equations into some iterative algebraic equations, and it is capable of reducing computational analytical works where the kernel of difference and simple degenerate types. Analytical examples are presented to illustrate the efficiency and accuracy of the proposed methods

    Numerical study of oxygen diffusion from capillary to tissues during hypoxia with external force effects

    Get PDF
    A mathematical model to simulate oxygen delivery through a capillary to tissues under the influence of an external force field is presented. The multi-term general fractional diffusion equation containing force terms and a time dependent absorbent term is taken into account. Fractional calculus is applied to describe the phenomenon of sub-diffusion of oxygen in both transverse and longitudinal directions. A new computational algorithm, i.e., the new iterative method (NIM) is employed to solve the spatio-temporal fractional partial differential equation subject to appropriate physical boundary conditions. Validation of NIM solutions is achieved with a modified Adomian decomposition method (MADM). A parametric study is conducted for three loading scenarios on the capillary-radial force alone, axial force alone and the combined case of both forces. The results demonstrate that the force terms markedly influence the oxygen diffusion process. For example, the radial force exerts a more profound effect than axial force on sub-diffusion of oxygen indicating that careful manipulation of these forces on capillary tissues may assist in the effective reduction of hypoxia or other oxygen depletion phenomena

    Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

    Full text link
    In this paper, indirect collocation approach based on compactly supported radial basis function is applied for solving Volterras population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterras model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the problem, we use the well-known CSRBF: Wendland3,5. Numerical results and residual norm 2 show good accuracy and rate of convergence.Comment: 8 pages , 1 figure. arXiv admin note: text overlap with arXiv:1008.233

    An algorithm for positive solution of boundary value problems of nonlinear fractional differential equations by Adomian decomposition method

    Get PDF
    In this paper, an algorithm based on a new modification, developed by Duan and Rach, for the Adomian decomposition method (ADM) is generalized to find positive solutions for boundary value problems involving nonlinear fractional ordinary differential equations. In the proposed algorithm the boundary conditions are used to convert the nonlinear fractional differential equations to an equivalent integral equation and then a recursion scheme is used to obtain the analytical solution components without the use of undetermined coefficients. Hence, there is no requirement to solve a nonlinear equation or a system of nonlinear equations of undetermined coefficients at each stage of approximation solution as per in the standard ADM. The fractional derivative is described in the Caputo sense. Numerical examples are provided to demonstrate the feasibility of the proposed algorithm

    Solution Techniques Based on Adomian and Modified Adomian Decomposition for Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type

    Get PDF
    هذا البحث يطبق بفعاليه طريقه التحليل الادوميانى وطريقه التحليل الادوميانى المعدله كتقنيات عددية لتعيين الحل شبه التحليلى او الحل شبه التقريبى للمعادلات التفاضليه التكامليه اللاخطيه للرتب الكسريه (IFDE) من نوع فولتيرا-هاميرشتين (V-H) والتى توصف فيها المشتقه الكسريه المتعدده العليا بنمط كابوتو. فى هذا النهج سنغير بشكل جذرى ال (IFDE) لنوع  (V-H)  الى بعض معادلات جبريه تكراريه وان الحل لهذه المعادلات هو بمثابه مجموع من المتتابعات اللاعدديه (Countless) لمركبات متقاربه نوعيا للحل المستند (المعتمد)  على الحدود الضوضائيه وذلك فى حاله عدم حصولنا على حل من النوع المغلق وان الحدود المقطوعه (المحذوفه) يستخدم للاغراض العدديه. واخيرا تم اعطاء امثله لتوضيح هذه الافكار والاعتباراتThis paper efficiently applies the Adomian Decomposition Method and Modified Adomian Decomposition Method as computational techniques to locate the semi-analytical solution or semi-approximate solution for the considered nonlinear Integro Differential Equations for the fractional-order (IFDE) of the Volterra-Hammerstein (V-H) type, in which the higher-multi fractional derivative is described in the Caputo sense.In this procedure, we radically change the IFDE’s of V-H type into some iterative algebraic equations and the solution of this equations is considered as the sum of the countless sequence of components typically converging to the solution based on the noise terms where a closed-form solution is not obtainable, a truncated number of terms is usually used for numerical purposes.Finally, examples are prepared to illustrate these considerations
    corecore