2,414 research outputs found

    Interpretable task planning and learning for autonomous robotic surgery with logic programming

    Get PDF
    This thesis addresses the long-term goal of full (supervised) autonomy in surgery, characterized by dynamic environmental (anatomical) conditions, unpredictable workflow of execution and workspace constraints. The scope is to reach autonomy at the level of sub-tasks of a surgical procedure, i.e. repetitive, yet tedious operations (e.g., dexterous manipulation of small objects in a constrained environment, as needle and wire for suturing). This will help reducing time of execution, hospital costs and fatigue of surgeons during the whole procedure, while further improving the recovery time for the patients. A novel framework for autonomous surgical task execution is presented in the first part of this thesis, based on answer set programming (ASP), a logic programming paradigm, for task planning (i.e., coordination of elementary actions and motions). Logic programming allows to directly encode surgical task knowledge, representing emph{plan reasoning methodology} rather than a set of pre-defined plans. This solution introduces several key advantages, as reliable human-like interpretable plan generation, real-time monitoring of the environment and the workflow for ready adaptation and failure recovery. Moreover, an extended review of logic programming for robotics is presented, motivating the choice of ASP for surgery and providing an useful guide for robotic designers. In the second part of the thesis, a novel framework based on inductive logic programming (ILP) is presented for surgical task knowledge learning and refinement. ILP guarantees fast learning from very few examples, a common drawback of surgery. Also, a novel action identification algorithm is proposed based on automatic environmental feature extraction from videos, dealing for the first time with small and noisy datasets collecting different workflows of executions under environmental variations. This allows to define a systematic methodology for unsupervised ILP. All the results in this thesis are validated on a non-standard version of the benchmark training ring transfer task for surgeons, which mimics some of the challenges of real surgery, e.g. constrained bimanual motion in small space

    Optimal Motion Planning with constraints for mobile robot navigation

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaves 34-36).Motion planning is the process of planning a sequence of motions to move an object from one configuration to another. Recently, randomized techniques known as PRMs have shown great potential for solving motion planning problems in complicated high-dimensional space. Motion Planning, or path planning for robots, becomes increasing difficult as the dimension of the planning space increases with the robot's degrees of freedom (dof). While the running time of deterministic motion planning algorithms grows exponentially with an increase in dof, PRMs can produce solutions in times that do not depend on the dof but only the difficulty of the problem. PRMs randomly generate collision free configurations in a robot's Configuration-space (Cspace), representing feasible positions and orientations for the robot. Nearby configurations are linked together by so-called local planners, and these connections are edges in a roadmap, a graph containing representative discrete paths the robot may travel. We present methods to extract optimal paths from roadmap-based motion planners. Our system uses Markov-like states and flexible goal states so that general optimization criteria including collision detection, kinematic/dynamic constraints, or minimum clearance can be used in various applications. Our algorithm is an augmented version of Dijkstra's shortest path algorithm. We present simulation results maximizing minimum path clearance, minimizing localization effort, and enforcing kinematic/ dynamic constraints

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD

    ADAPTIVE PROBABILISTIC ROADMAP CONSTRUCTION WITH MULTI-HEURISTIC LOCAL PLANNING

    Get PDF
    The motion planning problem means the computation of a collision-free motion for a movable object among obstacles from the given initial placement to the given end placement. Efficient motion planning methods have many applications in many fields, such as robotics, computer aided design, and pharmacology. The problem is known to be PSPACE-hard. Because of the computational complexity, practical applications often use heuristic or incomplete algorithms. Probabilistic roadmap is a probabilistically complete motion planning method that has been an object of intensive study over the past years. The method is known to be susceptible to the problem of “narrow passages”: Finding a motion that passes a narrow, winding tunnel can be very expensive. This thesis presents a probabilistic roadmap method that addresses the narrow passage problem with a local planner based on heuristic search. The algorithm is suitable for planning motions for rigid bodies and articulated robots including multirobot systems with many degrees-of-freedom. Variants of the algorithm are describe

    Bio-inspired, Varying Manifold Based Method With Enhanced Initial Guess Strategies For Single Vehicle\u27s Optimal Trajectory Planning

    Get PDF
    Trajectory planning is important in many applications involving unmanned aerial vehicles, underwater vehicles, spacecraft, and industrial manipulators. It is still a challenging task to rapidly find an optimal trajectory while taking into account dynamic and environmental constraints. In this dissertation, a unified, varying manifold based optimal trajectory planning method inspired by several predator-prey relationships is investigated to tackle this challenging problem. Biological species, such as hoverflies, ants, and bats, have developed many efficient hunting strategies. It is hypothesized that these types of predators only move along paths in a carefully selected manifold based on the prey’s motion in some of their hunting activities. Inspired by these studies, the predator-prey relationships are organized into a unified form and incorporated into the trajectory optimization formulation, which can reduce the computational cost in solving nonlinear constrained optimal trajectory planning problems. Specifically, three motion strategies are studied in this dissertation: motion camouflage, constant absolute target direction, and local pursuit. Necessary conditions based on the speed and obstacle avoidance constraints are derived. Strategies to tune initial guesses are proposed based on these necessary conditions to enhance the convergence rate and reduce the computational cost of the motion camouflage inspired strategy. The following simulations have been conducted to show the advantages of the proposed methods: a supersonic aircraft minimum-time-to-climb problem, a ground robot obstacle avoidance problem, and a micro air vehicle minimum time trajectory problem. The results show that the proposed methods can find the optimal solution with higher success rate and faster iv convergent speed as compared with some other popular methods. Among these three motion strategies, the method based on the local pursuit strategy has a relatively higher success rate when compared to the other two. In addition, the optimal trajectory planning method is embedded into a receding horizon framework with unknown parameters updated in each planning horizon using an Extended Kalman Filte

    Multi-Contact Postures Computation on Manifolds

    Get PDF
    International audienceWe propose a framework to generate static robot configurations satisfying a set of physical and geometrical constraints. This is done by formulating nonlinear constrained optimization problems over non-Euclidean manifolds and solving them. To do so, we present a new sequential quadratic programming (SQP) solver working natively on general manifolds, and propose an interface to easily formulate the problems, with the tedious and error-prone work automated for the user. We also introduce several new types of constraints for having more complex contacts or working on forces/torques. Our approach allows an elegant mathematical description of the constraints and we exemplify it through formulation and computation examples in complex scenarios with humanoid robots
    • …
    corecore