137 research outputs found

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Técnicas de optimización paralelas : esquema híbrido basado en hiperheurísticas y computación evolutiva

    Get PDF
    Optimisation is the process of selecting the best element fr om a set of available alternatives. Solutions are termed good or bad depending on its performance for a set of objectives. Several algorithms to deal with such kind of problems have been defined in the literature. Metaheuristics are one of the most prominent techniques. They are a class of modern heuristics whose main goal is to com bine heuristics in a problem independent way with the aim of improving their per formance. Meta- heuristics have reported high-quality solutions in severa l fields. One of the reasons of the good behaviour of metaheuristics is that they are defin ed in general terms. Therefore, metaheuristic algorithms can be adapted to fit th e needs of most real-life optimisation. However, such an adaptation is a hard task, and it requires a high computational and user effort. There are two main ways of reducing the effort associated to th e usage of meta- heuristics. First, the application of hyperheuristics and parameter setting strategies facilitates the process of tackling novel optimisation pro blems and instances. A hyperheuristic can be viewed as a heuristic that iterativel y chooses between a set of given low-level metaheuristics in order to solve an optim isation problem. By using hyperheuristics, metaheuristic practitioners do no t need to manually test a large number of metaheuristics and parameterisations for d iscovering the proper algorithms to use. Instead, they can define the set of configur ations which must be tested, and the model tries to automatically detect the be st-behaved ones, in order to grant more resources to them. Second, the usage of pa rallel environments might speedup the process of automatic testing, so high qual ity solutions might be achieved in less time. This research focuses on the design of novel hyperheuristic s and defines a set of models to allow their usage in parallel environments. Differ ent hyperheuristics for controlling mono-objective and multi-objective multi-po int optimisation strategies have been defined. Moreover, a set of novel multiobjectivisa tion techniques has been proposed. In addition, with the aim of facilitating the usage of multiobjectivi- sation, the performance of models that combine the usage of m ultiobjectivisation and hyperheuristics has been studied. The proper performance of the proposed techniques has been v alidated with a set of well-known benchmark optimisation problems. In addi tion, several practical and complex optimisation problems have been addressed. Som e of the analysed problems arise in the communication field. In addition, a pac king problem proposed in a competition has been faced up. The proposals for such pro blems have not been limited to use the problem-independent schemes. Inste ad, new metaheuristics, operators and local search strategies have been defined. Suc h schemes have been integrated with the designed parallel hyperheuristics wit h the aim of accelerating the achievement of high quality solutions, and with the aim of fa cilitating their usage. In several complex optimisation problems, the current best -known solutions have been found with the methods defined in this dissertation.Los problemas de optimización son aquellos en los que hay que elegir cuál es la solución más adecuada entre un conjunto de alternativas. Actualmente existe una gran cantidad de algoritmos que permiten abordar este tipo de problemas. Entre ellos, las metaheurísticas son una de las técnicas más usadas. El uso de metaheurísticas ha posibilitado la resolución de una gran cantidad de problemas en diferentes campos. Esto se debe a que las metaheurísticas son técnicas generales, con lo que disponen de una gran cantidad de elementos o parámetros que pueden ser adaptados a la hora de afrontar diferentes problemas de optimización. Sin embargo, la elección de dichos parámetros no es sencilla, por lo que generalmente se requiere un gran esfuerzo computacional, y un gran esfuerzo por parte del usuario de estas técnicas. Existen diversas técnicas que atenúan este inconveniente. Por un lado, existen varios mecanismos que permiten seleccionar los valores de dichos parámetros de forma automática. Las técnicas más simples utilizan valores fijos durante toda la ejecución, mientras que las técnicas más avanzadas, como las hiperheurísticas, adaptan los valores usados a las necesidades de cada fase de optimización. Además, estas técnicas permiten usar varias metaheurísticas de forma simultánea. Por otro lado, el uso de técnicas paralelas permite acelerar el proceso de testeo automático, reduciendo el tiempo necesario para obtener soluciones de alta calidad. El objetivo principal de esta tesis ha sido diseñar nuevas hiperheurísticas e integrarlas en el modelo paralelo basado en islas. Estas técnicas se han usado para controlar los parámetros de varias metaheurísticas evolutivas. Se han definido diversas hiperheurísticas que han permitido abordar tanto problemas mono-objetivo como problemas multi-objetivo. Además, se han definido un conjunto de multiobjetivizaciones, que a su vez se han beneficiado de las hiperheurísticas propuestas. Las técnicas diseñadas se han validado con algunos de los problemas de test más ampliamente utilizados. Además, se han abordado un conjunto de problemas de optimización prácticos. Concretamente, se han tratado tres problemas que surgen en el ámbito de las telecomunicaciones, y un problema de empaquetado. En dichos problemas, además de usar las hiperheurísticas y multiobjetivizaciones, se han definido nuevos algoritmos, operadores, y estrategias de búsqueda local. En varios de los problemas, el uso combinado de todas estas técnicas ha posibilitado obtener las mejores soluciones encontradas hasta el momento

    Facial Modelling and animation trends in the new millennium : a survey

    Get PDF
    M.Sc (Computer Science)Facial modelling and animation is considered one of the most challenging areas in the animation world. Since Parke and Waters’s (1996) comprehensive book, no major work encompassing the entire field of facial animation has been published. This thesis covers Parke and Waters’s work, while also providing a survey of the developments in the field since 1996. The thesis describes, analyses, and compares (where applicable) the existing techniques and practices used to produce the facial animation. Where applicable, the related techniques are grouped in the same chapter and described in a chronological fashion, outlining their differences, as well as their advantages and disadvantages. The thesis is concluded by exploratory work towards a talking head for Northern Sotho. Facial animation and lip synchronisation of a fragment of Northern Sotho is done by using software tools primarily designed for English.Computin

    Proceedings of the 5th international conference on disability, virtual reality and associated technologies (ICDVRAT 2004)

    Get PDF
    The proceedings of the conferenc

    From Einstein to Einstein Telescope: From Testing Predictions to Addressing Future Challenges

    Get PDF
    Cataclysmic events such as the merger of black holes and neutron stars can lead to the emission of gravitational waves. Since 2015, around a hundred such signals have been detected. As the detectors are upgraded, more signals will be detected, opening the door to new scientific avenues. One such avenue is the strong lensing of gravitational waves, where the presence of a massive object along the wave’s trajectory leads to it being split into several images with the same frequency evolution. In this thesis, we demonstrate a new and faster method to search for and analyze such lensed signals. In addition, we show two different avenues to decrease the high false-alarm probability related to lensing searches. One uses higher-order modes to identify signatures intrinsic to lensed gravitational-wave signals. The other consists of including the expected distribution for the lensing parameters in the detection statistic, effectively reducing the false alarm. Besides lensing, upgraded detectors also offer the possibility to accumulate information about the signal earlier before the merger. This is important when one wants to jointly analyze gravitational wave and electromagnetic data for binary neutron star signals. In this thesis, we exploit machine-learning-based techniques to set up an early alert system able to issue alerts up to a minute and a half before the merger happens. In parallel, we develop a system to rapidly generate sky maps for detected signals. Even if they are currently at the stage of proof-of-concept, joining these two approaches could make for the first full machine-learning-based early-alert system. In addition to upgrading the existing detectors, the next generation of ground-based detectors is already planned. These detectors should see many more events and have an increased sensitive band, making for long signals. Therefore, signals could start overlapping. In this thesis, we establish that overlaps will be common for these detectors. Then, we study their impact on data analysis and establish that, in some cases, not accounting for the overlapping signals can lead to erroneous results. This motivates the development of new analysis techniques able to deal with this observation scenario. In this thesis, we suggest two different methods: hierarchical subtraction and joint parameter estimation. The first is faster than the second but more keen on biases due to the overlapping signals. An issue with these methods is their speed as they would be unable to keep up the pace with the expected detection rate. Therefore, in this thesis, we also explore the possibility to analyze overlapping signals using machine learning techniques. While slightly less precise, our method is able to analyze overlapped binary black hole signals in about a second, compared to 20 to 30 days for Bayesian methods. Further upgrades to our framework should make it able to analyze joint signals, opening the door to more precise simulation studies for next-generation detectors

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers
    corecore