34 research outputs found

    Hub location under competition

    Get PDF
    Ankara : The Department of Industrial Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013.Thesis (Master's) -- Bilkent University, 2013.Includes bibliographical references leaves 64-69.Hubs are consolidation and dissemination points in many-to-many flow networks. The hub location problem is to locate hubs among available nodes and allocate non-hub nodes to these hubs. The mainstream hub location studies focus on optimal decisions of one decision-maker with respect to some objective(s) even though the markets that benefit hubbing are oligopolies. Therefore, in this thesis, we propose a competitive hub location problem where the market is assumed to be a duopoly. Two decision-makers (or firms) sequentially decide the locations of their hubs and then customers choose the firm according to provided service levels. Each decision-maker aims to maximize his/her market share. Having investigated the existing studies in the field of economy, retail location and operation research, we propose two problems for the leader (former decision-maker) and follower (latter decision-maker): (r|Xp) hub-medianoid and (r|p) hub-centroid problems. After defining them as combinatorial optimization problems, the problems are proved to be NP-hard. Linear programming models are presented for these problems as well as exact solution algorithms for the (r|p) hub-centroid problem that outperform the linear model in terms of memory requirement and CPU time. The performance of models and algorithms are tested by the computational analysis conducted on two well-known data sets from the hub location literature.Mahmutoğulları, Ali İrfanM.S

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process
    corecore