110,068 research outputs found

    Preconditioning polynomial systems using Macaulay dual spaces

    Get PDF
    Includes bibliographical references.2015 Summer.Polynomial systems arise in many applications across a diverse landscape of subjects. Solving these systems has been an area of intense research for many years. Methods for solving these systems numerically fit into the field of numerical algebraic geometry. Many of these methods rely on an idea called homotopy continuation. This method is very effective for solving systems of polynomials in many variables. However, in the case of zero-dimensional systems, we may end up tracking many more solutions than actually exist, leading to excess computation. This project preconditions these systems in order to reduce computation. We present the background on homotopy continuation and numerical algebraic geometry as well as the theory of Macaulay dual spaces. We show how to turn an algebraic geometric preconditioning problem into one of numerical linear algebra. Algorithms for computing an H-basis and thereby preconditioning the original system to remove extraneous calculation are presented. The concept of the Closedness Subspace is introduced and used to replace a bottleneck computation. A novel algorithm employing this method is introduced and discussed

    Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

    Full text link
    This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an SL(2,\Rl) gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order â„Ź2\hbar^2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to â„Ź\hbar normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction.Comment: 33 pages, no figure

    Dynamic Matrix Ansatz for Integrable Reaction-Diffusion Processes

    Full text link
    We show that the stochastic dynamics of a large class of one-dimensional interacting particle systems may be presented by integrable quantum spin Hamiltonians. Generalizing earlier work \cite{Stin95a,Stin95b} we present an alternative description of these processes in terms of a time-dependent operator algebra with quadratic relations. These relations generate the Bethe ansatz equations for the spectrum and turn the calculation of time-dependent expectation values into the problem of either finding representations of this algebra or of solving functional equations for the initial values of the operators. We use both strategies for the study of two specific models: (i) We construct a two-dimensional time-dependent representation of the algebra for the symmetric exclusion process with open boundary conditions. In this way we obtain new results on the dynamics of this system and on the eigenvectors and eigenvalues of the corresponding quantum spin chain, which is the isotropic Heisenberg ferromagnet with non-diagonal, symmetry-breaking boundary fields. (ii) We consider the non-equilibrium spin relaxation of Ising spins with zero-temperature Glauber dynamics and an additional coupling to an infinite-temperature heat bath with Kawasaki dynamics. We solve the functional equations arising from the algebraic description and show non-perturbatively on the level of all finite-order correlation functions that the coupling to the infinite-temperature heat bath does not change the late-time behaviour of the zero-temperature process. The associated quantum chain is a non-hermitian anisotropic Heisenberg chain related to the seven-vertex model.Comment: Latex, 23 pages, to appear in European Physical Journal

    Solving Degenerate Sparse Polynomial Systems Faster

    Get PDF
    Consider a system F of n polynomial equations in n unknowns, over an algebraically closed field of arbitrary characteristic. We present a fast method to find a point in every irreducible component of the zero set Z of F. Our techniques allow us to sharpen and lower prior complexity bounds for this problem by fully taking into account the monomial term structure. As a corollary of our development we also obtain new explicit formulae for the exact number of isolated roots of F and the intersection multiplicity of the positive-dimensional part of Z. Finally, we present a combinatorial construction of non-degenerate polynomial systems, with specified monomial term structure and maximally many isolated roots, which may be of independent interest.Comment: This is the final journal version of math.AG/9702222 (``Toric Generalized Characteristic Polynomials''). This final version is a major revision with several new theorems, examples, and references. The prior results are also significantly improve

    Solving multivariate polynomial systems and an invariant from commutative algebra

    Get PDF
    The complexity of computing the solutions of a system of multivariate polynomial equations by means of Gr\"obner bases computations is upper bounded by a function of the solving degree. In this paper, we discuss how to rigorously estimate the solving degree of a system, focusing on systems arising within public-key cryptography. In particular, we show that it is upper bounded by, and often equal to, the Castelnuovo Mumford regularity of the ideal generated by the homogenization of the equations of the system, or by the equations themselves in case they are homogeneous. We discuss the underlying commutative algebra and clarify under which assumptions the commonly used results hold. In particular, we discuss the assumption of being in generic coordinates (often required for bounds obtained following this type of approach) and prove that systems that contain the field equations or their fake Weil descent are in generic coordinates. We also compare the notion of solving degree with that of degree of regularity, which is commonly used in the literature. We complement the paper with some examples of bounds obtained following the strategy that we describe

    Numerical algebraic geometry for model selection and its application to the life sciences

    Full text link
    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation, and model selection. These are all optimization problems, well-known to be challenging due to non-linearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data is available. Here, we consider polynomial models (e.g., mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometric structures relating models and data, and we demonstrate its utility on examples from cell signaling, synthetic biology, and epidemiology.Comment: References added, additional clarification
    • …
    corecore