7,248 research outputs found

    On the implementation of P-RAM algorithms on feasible SIMD computers

    Get PDF
    The P-RAM model of computation has proved to be a very useful theoretical model for exploiting and extracting inherent parallelism in problems and thus for designing parallel algorithms. Therefore, it becomes very important to examine whether results obtained for such a model can be translated onto machines considered to be more realistic in the face of current technological constraints. In this thesis, we show how the implementation of many techniques and algorithms designed for the P-RAM can be achieved on the feasible SIMD class of computers. The first investigation concerns classes of problems solvable on the P-RAM model using the recursive techniques of compression, tree contraction and 'divide and conquer'. For such problems, specific methods are emphasised to achieve efficient implementations on some SIMD architectures. Problems such as list ranking, polynomial and expression evaluation are shown to have efficient solutions on the 2—dimensional mesh-connected computer. The balanced binary tree technique is widely employed to solve many problems in the P-RAM model. By proposing an implicit embedding of the binary tree of size n on a (√n x√n) mesh-connected computer (contrary to using the usual H-tree approach which requires a mesh of size ≈ (2√n x 2√n), we show that many of the problems solvable using this technique can be efficiently implementable on this architecture. Two efficient O (√n) algorithms for solving the bracket matching problem are presented. Consequently, the problems of expression evaluation (where the expression is given in an array form), evaluating algebraic expressions with a carrier of constant bounded size and parsing expressions of both bracket and input driven languages are all shown to have efficient solutions on the 2—dimensional mesh-connected computer. Dealing with non-tree structured computations we show that the Eulerian tour problem for a given graph with m edges and maximum vertex degree d can be solved in O(d√n) parallel time on the 2 —dimensional mesh-connected computer. A way to increase the processor utilisation on the 2-dimensional mesh-connected computer is also presented. The method suggested consists of pipelining sets of iteratively solvable problems each of which at each step of its execution uses only a fraction of available PE's

    On the impact of communication complexity in the design of parallel numerical algorithms

    Get PDF
    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation

    Constant-Time Algorithms for Minimum Spanning Tree and Related Problems on Processor Array with Reconfigurable Bus Systems

    Get PDF
    [[abstract]]A processor array with a reconfigurable bus system is a parallel computation model that consists of a processor array and a reconfigurable bus system. In this paper, a constant-time algorithm is proposed on this model for finding the cycles in an undirected graph. We can use this algorithm to decide whether a specified edge belongs to the minimum spanning tree of the graph or not. This cycle-finding algorithm is designed on a two-dimensional n×nn\times n processor array with a reconfigurable bus system, where nn is the number of vertices in the graph. Based on this cycle-finding algorithm, the minimum spanning tree problem and the spanning tree problem can be solved in O(1) time by using fewer processors than before, O(n×m×nn\times m\times n) and O(n3n^3) processors respectively. This is a substantial improvement over previous known results. Moreover, we also propose two constant-time algorithms for solving the minimum spanning tree verification problem and spanning tree verification problem by using O(n3n^3) and O(n2n^2) processors, respectively.

    Group implicit concurrent algorithms in nonlinear structural dynamics

    Get PDF
    During the 70's and 80's, considerable effort was devoted to developing efficient and reliable time stepping procedures for transient structural analysis. Mathematically, the equations governing this type of problems are generally stiff, i.e., they exhibit a wide spectrum in the linear range. The algorithms best suited to this type of applications are those which accurately integrate the low frequency content of the response without necessitating the resolution of the high frequency modes. This means that the algorithms must be unconditionally stable, which in turn rules out explicit integration. The most exciting possibility in the algorithms development area in recent years has been the advent of parallel computers with multiprocessing capabilities. So, this work is mainly concerned with the development of parallel algorithms in the area of structural dynamics. A primary objective is to devise unconditionally stable and accurate time stepping procedures which lend themselves to an efficient implementation in concurrent machines. Some features of the new computer architecture are summarized. A brief survey of current efforts in the area is presented. A new class of concurrent procedures, or Group Implicit algorithms is introduced and analyzed. The numerical simulation shows that GI algorithms hold considerable promise for application in coarse grain as well as medium grain parallel computers

    A partitioning strategy for nonuniform problems on multiprocessors

    Get PDF
    The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning

    Highly parallel sparse Cholesky factorization

    Get PDF
    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also
    • …
    corecore