271 research outputs found

    A Review on GPU Based Parallel Computing for NP Problems

    Get PDF
    Now a days there are different number of optimization problems are present. Which are NP problems to solve this problems parallel metaheuristic algorithm are required. Graph theories are most commonly studied combinational problems. In this paper providing the new move towards solve this combinational problem with GPU based parallel computing using CUDA architecture. Comparing those problem with relevant to the transfer rate, effective memory utilization and speedup etc. to acquire the paramount possible solution. By applying the different algorithms on the optimization problem to catch the efficient memory exploitation, synchronized execution, saving time and increasing speedup of execution. Due to this the speedup factor is enhance and get the best optimal solution

    Simulation of identifying shortest path walkway in library by using ant colony optimization

    Get PDF
    A research is proposed based on Ant Colony Optimization for solving the shortest path problem in library.This is a research that the algorithm is aim to implement on a robot. The robot is used to walk around in the library to collect books from all the tables and put on book shelves.However, command prompt window will use to shows the result which is the shortest path.People nowadays are more concern about the efficiency of work,this may happen in library as well. Therefore,by determining the shortest path will help in reducing the time consume problem.This project is developed by starting with designing the workflow diagram as well as the design of the output interface.The work flow is the guide for the process of development.In between,Heuristic Approach is used to determine the entire possible paths at first,then Ant Colony Optimization algorithm will be implemented to search for the final and the shortest path. The system is used to be error free and the algorithm can effectively solve the shortest path problem

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF

    Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

    Get PDF
    [Extract] Population based optimization algorithms are the techniques which are in the set of the nature based optimization algorithms. The creatures and natural systems which are working and developing in nature are one of the interesting and valuable sources of inspiration for designing and inventing new systems and algorithms in different fields of science and technology. Evolutionary Computation (Eiben& Smith, 2003), Neural Networks (Haykin, 99), Time Adaptive Self-Organizing Maps (Shah-Hosseini, 2006), Ant Systems (Dorigo & Stutzle, 2004), Particle Swarm Optimization (Eberhart & Kennedy, 1995), Simulated Annealing (Kirkpatrik, 1984), Bee Colony Optimization (Teodorovic et al., 2006) and DNA Computing (Adleman, 1994) are among the problem solving techniques inspired from observing nature. In this chapter population based optimization algorithms have been introduced. Some of these algorithms were mentioned above. Other algorithms are Intelligent Water Drops (IWD) algorithm (Shah-Hosseini, 2007), Artificial Immune Systems (AIS) (Dasgupta, 1999) and Electromagnetism-like Mechanisms (EM) (Birbil & Fang, 2003). In this chapter, every section briefly introduces one of these population based optimization algorithms and applies them for solving the TSP. Also, we try to note the important points of each algorithm and every point we contribute to these algorithms has been stated. Section nine shows experimental results based on the algorithms introduced in previous sections which are implemented to solve different problems of the TSP using well-known datasets

    Shadow Price Guided Genetic Algorithms

    Get PDF
    The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used successfully in many fields, there are still performance challenges that prevent GA’s further success. The performance challenges include: difficult to reach optimal solutions for complex problems and take a very long time to solve difficult problems. This dissertation is to research new ways to improve GA’s performance on solution quality and convergence speed. The main focus is to present the concept of shadow price and propose a two-measurement GA. The new algorithm uses the fitness value to measure solutions and shadow price to evaluate components. New shadow price Guided operators are used to achieve good measurable evolutions. Simulation results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in terms of performance and efficient in terms of speed

    A Particle Swarm Optimisation Approach to Graph Permutations

    Get PDF
    • …
    corecore