28,880 research outputs found

    Exact solutions in a scalar-tensor model of dark energy

    Full text link
    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.Comment: 30 pages, 2 figures, to appear in JCA

    One Thousand and One Bubbles

    Full text link
    We propose a novel strategy that permits the construction of completely general five-dimensional microstate geometries on a Gibbons-Hawking space. Our scheme is based on two steps. First, we rewrite the bubble equations as a system of linear equations that can be easily solved. Second, we conjecture that the presence or absence of closed timelike curves in the solution can be detected through the evaluation of an algebraic relation. The construction we propose is systematic and covers the whole space of parameters, so it can be applied to find all five-dimensional BPS microstate geometries on a Gibbons-Hawking base. As a first result of this approach, we find that the spectrum of scaling solutions becomes much larger when non-Abelian fields are present. We use our method to describe several smooth horizonless multicenter solutions with the asymptotic charges of three-charge (Abelian and non-Abelian) black holes. In particular, we describe solutions with the centers lying on lines and circles that can be specified with exact precision. We show the power of our method by explicitly constructing a 50-center solution. Moreover, we use it to find the first smooth five-dimensional microstate geometries with arbitrarily small angular momentum.Comment: 33 pages. v2: typos correcte

    Toward solving the cosmological constant problem by embedding

    Get PDF
    The typical scalar field theory has a cosmological constant problem. We propose a generic mechanism by which this problem is avoided at tree level by embedding the theory into a larger theory. The metric and the scalar field coupling constants in the original theory do not need to be fine-tuned, while the extra scalar field parameters and the metric associated with the extended theory are fine-tuned dynamically. Hence, no fine-tuning of parameters in the full Lagrangian is needed for the vacuum energy in the new physical system to vanish at tree level. The cosmological constant problem can be solved if the method can be extended to quantum loops.Comment: published versio

    Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Full text link
    Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on dd dimensional flat spacetime. It is discussed how the presence of cosmological constant yields additional constraints on the parameter space of the theory, even when the conformal anomaly is independent of the cosmological constant. Such constraints agree with the necessary conditions for the tachyon field to be a primary --prelogarithmic-- operator of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows to impose the diagonal condition for the interaction term. We analyze the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The free field prescription leads to obtain explicit expressions for three-point correlation functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals. This is a consequence of the mentioned neutralization effect.Comment: 14 pages, no figures. v2 References added. To be published in Classical and Quantum Gravity. v3 typos correcte

    Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions

    Full text link
    The monodromy transform and corresponding integral equation method described here give rise to a general systematic approach for solving integrable reductions of field equations for gravity coupled bosonic dynamics in string gravity and supergravity in four and higher dimensions. For different types of fields in space-times of D4D\ge 4 dimensions with d=D2d=D-2 commuting isometries -- stationary fields with spatial symmetries, interacting waves or partially inhomogeneous cosmological models, the string gravity equations govern the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n0n\ge 0 of Abelian vector gauge fields (all depending only on two coordinates). The equivalent spectral problem constructed earlier allows to parameterize the infinite-dimensional space of local solutions of these equations by two pairs of \cal{arbitrary} coordinate-independent holomorphic d×dd\times d- and d×nd\times n- matrix functions u±(w),v±(w){\mathbf{u}_\pm(w), \mathbf{v}_\pm(w)} of a spectral parameter ww which constitute a complete set of monodromy data for normalized fundamental solution of this spectral problem. The "direct" and "inverse" problems of such monodromy transform --- calculating the monodromy data for any local solution and constructing the field configurations for any chosen monodromy data always admit unique solutions. We construct the linear singular integral equations which solve the inverse problem. For any \emph{rational} and \emph{analytically matched} (i.e. u+(w)u(w)\mathbf{u}_+(w)\equiv\mathbf{u}_-(w) and v+(w)v(w)\mathbf{v}_+(w)\equiv\mathbf{v}_-(w)) monodromy data the solution for string gravity equations can be found explicitly. Simple reductions of the space of monodromy data leads to the similar constructions for solving of other integrable symmetry reduced gravity models, e.g. 5D minimal supergravity or vacuum gravity in D4D\ge 4 dimensions.Comment: RevTex 7 pages, 1 figur

    A New Formulation of the Initial Value Problem for Nonlocal Theories

    Full text link
    There are a number of reasons to entertain the possibility that locality is violated on microscopic scales, for example through the presence of an infinite series of higher derivatives in the fundamental equations of motion. This type of nonlocality leads to improved UV behaviour, novel cosmological dynamics and is a generic prediction of string theory. On the other hand, fundamentally nonlocal models are fraught with complications, including instabilities and complications in setting up the initial value problem. We study the structure of the initial value problem in an interesting class of nonlocal models. We advocate a novel new formulation wherein the Cauchy surface is "smeared out" over the underlying scale of nonlocality, so that the the usual notion of initial data at t=0 is replaced with an "initial function" defined over -M^{-1} \leq t \leq 0 where M is the underlying scale of nonlocality. Focusing on some specific examples from string theory and cosmology, we show that this mathematical re-formulation has surprising implications for the well-known stability problem. For D-brane decay in a linear dilaton background, we are able to show that the unstable directions in phase space cannot be accessed starting from a physically sensible initial function. Previous examples of unstable solutions in this model therefore correspond to unphysical initial conditions, an observation which is obfuscated in the old formulation of the initial value problem. We also discuss implication of this approach for nonlocal cosmological models.Comment: 36 pages, 9 figures. Accepted for publication in Nuclear Physics

    Black holes and black strings of N=2, d=5 supergravity in the H-FGK formalism

    Get PDF
    We study general classes and properties of extremal and non-extremal static black-hole solutions of N=2, d=5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the black-hole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K_3 \times S^1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.Comment: 33 pages. Revised version: references added. No other change

    Hagedorn inflation of D-branes

    Get PDF
    We examine the cosmological effects of the Hagedorn phase in models where the observable universe is pictured as a D-brane. It is shown that, even in the absence of a cosmological constant, winding modes cause a negative `pressure' that can drive brane inflation of various types including both power law and exponential. We also find regimes in which the cosmology is stable but oscillating (a bouncing universe) with the Hagedorn phase softening the singular behavior associated with the collapse.Comment: 44 Pages; JHEP latex; includes 1 postscript figur
    corecore