1,866 research outputs found

    Dynamic Optimization of Network Routing Problem through Ant Colony Optimization (ACO)

    Get PDF
    Search Based Software Engineering (SBSE) is a new paradigm of Software engineering, which considers software engineering problems as search problems and emphasizes to find out optimal solution for the given set of available solutions using metaheuristic techniques like hill climbing simulated annealing, evolutionary programming and tabu search. On the other hand AI techniques like Swarm particle optimization and Ant colony optimization (ACO) are used to find out solutions for dynamic problems. SBSE is yet not used for dynamic problems. In this study ACO techniques are applied on SBSE problem by considering Network routing problem as case study, in which the nature of problem is dynamic. Keywords: SBSE, ACO, Metaheuristic search techniques, dynamic optimizatio

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció

    Models and procedures for electric energy distribution planning. A review

    Get PDF
    Distribution system planning is a key component to accomplish the service in a fast growing demand market, both from a technical point of view and from the economic costs management. In the near future, electric companies will need faster and cheaper planning tools to evaluate different scenarios and their consequences for the rest of the system and provide their clients whit safe reliable and economic energy. The objective of this paper is to review different articles about this subject trying to continue the previous work from Gonen and Ramírez-Rosado in 1986 (Gönen,1986).Postprint (published version

    ADAPTIVE SEARCH AND THE PRELIMINARY DESIGN OF GAS TURBINE BLADE COOLING SYSTEMS

    Get PDF
    This research concerns the integration of Adaptive Search (AS) technique such as the Genetic Algorithms (GA) with knowledge based software to develop a research prototype of an Adaptive Search Manager (ASM). The developed approach allows to utilise both quantitative and qualitative information in engineering design decision making. A Fuzzy Expert System manipulates AS software within the design environment concerning the preliminary design of gas turbine blade cooling systems. Steady state cooling hole geometry models have been developed for the project in collaboration with Rolls Royce plc. The research prototype of ASM uses a hybrid of Adaptive Restricted Tournament Selection (ARTS) and Knowledge Based Hill Climbing (KBHC) to identify multiple "good" design solutions as potential design options. ARTS is a GA technique that is particularly suitable for real world problems having multiple sub-optima. KBHC uses information gathered during the ARTS search as well as information from the designer to perform a deterministic hill climbing. Finally, a local stochastic hill climbing fine tunes the "good" designs. Design solution sensitivity, design variable sensitivities and constraint sensitivities are calculated following Taguchi's methodology, which extracts sensitivity information with a very small number of model evaluations. Each potential design option is then qualitatively evaluated separately for manufacturability, choice of materials and some designer's special preferences using the knowledge of domain experts. In order to guarantee that the qualitative evaluation module can evaluate any design solution from the entire design space with a reasonably small number of rules, a novel knowledge representation technique is developed. The knowledge is first separated in three categories: inter-variable knowledge, intra-variable knowledge and heuristics. Inter-variable knowledge and intra-variable knowledge are then integrated using a concept of compromise. Information about the "good" design solutions is presented to the designer through a designer's interface for decision support.Rolls Royce plc., Bristol (UK

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks

    Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge.</p> <p>Results</p> <p>We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC) devoted to BN structure learning.</p> <p>Conclusion</p> <p>We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.</p

    The design and applications of the african buffalo algorithm for general optimization problems

    Get PDF
    Optimization, basically, is the economics of science. It is concerned with the need to maximize profit and minimize cost in terms of time and resources needed to execute a given project in any field of human endeavor. There have been several scientific investigations in the past several decades on discovering effective and efficient algorithms to providing solutions to the optimization needs of mankind leading to the development of deterministic algorithms that provide exact solutions to optimization problems. In the past five decades, however, the attention of scientists has shifted from the deterministic algorithms to the stochastic ones since the latter have proven to be more robust and efficient, even though they do not guarantee exact solutions. Some of the successfully designed stochastic algorithms include Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony Optimization, Firefly Optimization etc. A critical look at these ‘efficient’ stochastic algorithms reveals the need for improvements in the areas of effectiveness, the number of several parameters used, premature convergence, ability to search diverse landscapes and complex implementation strategies. The African Buffalo Optimization (ABO), which is inspired by the herd management, communication and successful grazing cultures of the African buffalos, is designed to attempt solutions to the observed shortcomings of the existing stochastic optimization algorithms. Through several experimental procedures, the ABO was used to successfully solve benchmark optimization problems in mono-modal and multimodal, constrained and unconstrained, separable and non-separable search landscapes with competitive outcomes. Moreover, the ABO algorithm was applied to solve over 100 out of the 118 benchmark symmetric and all the asymmetric travelling salesman’s problems available in TSPLIB95. Based on the successful experimentation with the novel algorithm, it is safe to conclude that the ABO is a worthy contribution to the scientific literature

    A decision support system for the management of smart mobility services

    Get PDF
    Master Dissertation (Master Degree in Engineering and Management of Information Systems)Nos dias que correm, a mobilidade assume especial importância no quotidiano das áreas metropolitanas em crescimento no país. . Com o notório crescimento das cidades, torna-se necessária e urgente uma transformação dos costumes e formas de mobilidade dentro das áreas urbanas, alterando as realidades aparentes que hoje conhecemos. Inseridos numa sociedade cada vez mais consciencializada e alerta para as questões ambientais, é essencial transportar esta mentalidade renovada para a resolução das problemáticas citadinas. Assim, o conceito de “Cidade Verde” levanta uma série de questões que exigem uma resposta eficaz para o bem-estar dos seus habitantes. Por entre as várias soluções apresentadas para estas patologias, uma das mais promissoras é, sem dúvida, o sistema de mobilidade partilhada. Pela sua dimensão, é pertinente expor o caso prático da cidade de Barcelona, em Espanha, explorando o seu sistema de partilha de scooters, um meio que adquire especial importância como meio de transporte urbano. Como qualquer sistema em constante aprimoramento, procura-se uma solução para a problemática da variação de procura, que apresenta oscilações constantes, tanto a nível temporal como geográfico, resultando na falta de veículos em algumas áreas e excesso noutras. Assim sendo, o rebalanceamento do sistema torna-se crucial para uma possível maximização na utilização de veículos, satisfazendo a procura e potenciando um aumento da sua utilização. No correr desta dissertação, foram estudados e utilizados vários métodos de otimização moderna (metaheurísticas) para a procura de soluções (sub)ótimas para o(s) percurso(s) a percorrer pelo(s) veículo(s) que executam a redistribuição das scooter/bicicletas pelas diversas áreas abrangidas pelo sistema de partilha. Deste modo, foi desenvolvido um sistema de apoio à decisão para satisfazer estas necessidades, garantindo ao utilizador toda a informação relevante para um trabalho mais eficiente e preciso.Nowadays, mobility is especially important in the daily life of the country growing metropolitan areas. With the increasing influx of people and development of these large cities, the reality of mobility that we know becomes increasingly unsustainable. Along with mobility, the environmental concerns are one of the main topics of discussion worldwide and the population is starting to act and change the way they live to find a more “green” and sustainable way of doing it. Several proposals have been put forward, trying to mitigate this issue and, one of the most promising is, undoubtedly, shared mobility systems. In this case study will be addressed the Barcelona scooter sharing system, characterized by its great size and importance as a mean of urban transport. One of the problems presented by these sharing services is that demand varies widely, both temporal and geographical. Thus, there are several cases where there is a lack of vehicles in some areas and an excess in others. The rebalancing of the system is crucial to maximize vehicle utilization and meet customer demand. In this thesis, several modern optimization methods (metaheuristics) were used to search for (sub)optimal solutions for the redistribution route(s). A decision support system was developed to meet this end, giving the end user relevant information for a more efficient and precise work
    corecore