293 research outputs found

    Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2010 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council of U.K. underGrant EP/E060722/

    A Survey on the Application of Evolutionary Algorithms for Mobile Multihop Ad Hoc Network Optimization Problems

    Get PDF
    Evolutionary algorithms are metaheuristic algorithms that provide quasioptimal solutions in a reasonable time. They have been applied to many optimization problems in a high number of scientific areas. In this survey paper, we focus on the application of evolutionary algorithms to solve optimization problems related to a type of complex network likemobilemultihop ad hoc networks. Since its origin, mobile multihop ad hoc network has evolved causing new types of multihop networks to appear such as vehicular ad hoc networks and delay tolerant networks, leading to the solution of new issues and optimization problems. In this survey, we review the main work presented for each type of mobile multihop ad hoc network and we also present some innovative ideas and open challenges to guide further research in this topic

    An Energy Efficient and Cost Reduction based Hybridization Scheme for Mobile Ad-hoc Networks (MANET) over the Internet of Things (IoT)

    Get PDF
    Wireless networks are viewed as the best-used network and specifically Portable Specially Appointed Organizations (MANETs) have tracked down numerous applications for its information transmission progressively. The plan issues in this organization are to confine the utilization of energy while communicating data and give security to the hubs. Soa protocol needs to be energy efficient to avoid network failures. Thereby this paper brings an effective energy efficient to optimize LEAR and make it energy efficient. The energy-mindfulness element is added to the LEAR guiding convention in this work using the Binary Particle Swarm Optimization method (BPSO). The recommended method selects programmes taking into account course length in addition to the programme level of energy when predicting the future. To get good results, the steered challenge is first designed using LEAR. The next step is to choose a route that enhances the weighting capability of the study hours and programming power used.This MANET has been secured using the cryptographic method known as AES.According to experimental findings, the proposed hybrid version outperformed other cutting-edge models

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    NFK: a novel fault-tolerant K-mutual exclusion algorithm for mobile and opportunistic ad hoc networks

    Full text link
    [EN] This paper presents a fault-tolerant algorithm ensuring multiple resources sharing in mobile ad hoc networks (MANETs) that is able to handle the known K-mutual exclusion problem in such mobile environments. The proposed algorithm relies on a token-based strategy, and requires information about resources and their use to be carried in routing protocol control messages. This way, our solution avoids any additional exchange of messages. Furthermore, experimental results show that it offers a fast response time. Moreover, we introduce a dual-layer fault-tolerance mechanism that tolerates the faults of several sites at the same time without affecting the well functioning of the system. Simulation results also evidence the high efficiency of our proposal, which achieves reduced overhead and response delay even in the presence of critical situations where multiple simultaneous faults occur.Allaoui, T.; Yagoubi, MB.; Kerrache, CA.; Tavares De Araujo Cesariny Calafate, CM. (2019). NFK: a novel fault-tolerant K-mutual exclusion algorithm for mobile and opportunistic ad hoc networks. International Journal of Information and Communication Technology. 15(2):176-197. https://doi.org/10.1504/IJICT.2019.102479S17619715

    Deception in Game Theory: A Survey and Multiobjective Model

    Get PDF
    Game theory is the study of mathematical models of conflict. It provides tools for analyzing dynamic interactions between multiple agents and (in some cases) across multiple interactions. This thesis contains two scholarly articles. The first article is a survey of game-theoretic models of deception. The survey describes the ways researchers use game theory to measure the practicality of deception, model the mechanisms for performing deception, analyze the outcomes of deception, and respond to, or mitigate the effects of deception. The survey highlights several gaps in the literature. One important gap concerns the benefit-cost-risk trade-off made during deception planning. To address this research gap, the second article introduces a novel approach for modeling these trade-offs. The approach uses a game theoretic model of deception to define a new multiobjective optimization problem called the deception design problem (DDP). Solutions to the DDP provide courses of deceptive action that are efficient in terms of their benefit, cost, and risk to the deceiver. A case study based on the output of an air-to-air combat simulator demonstrates the DDP in a 7 x 7 normal form game. This approach is the first to evaluate benefit, cost, and risk in a single game theoretic model of deception

    Algorithms based on spider daddy long legs for finding the optimal route in securing mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are wireless networks that are subject to severe attacks, such as the black hole attack. One of the goals in the research is to find a method to prevent black hole attacks without decreasing network throughput or increasing routing overhead. The routing mechanism in define uses route requests (RREQs; for discovering routes) and route replies (RREPs; for receiving paths). However, this mechanism is vulnerable to attacks by malicious black hole nodes. The mechanism is developed to find the shortest secure path and to reduce overhead using the information that is available in the routing tables as an input to propose a more complex nature-inspired algorithm. The new method is called the Daddy Long-Legs Algorithm (PGO-DLLA), which modifies the standard AODV and optimizes the routing process. This method avoids dependency exclusively on the hop counts and destination sequence numbers (DSNs) that are exploited by malicious nodes in the standard AODV protocol. The experiment by performance metrics End-to-End delay and packet delivery ratio are compared in order to determine the best effort traffic. The results showed the PGO-DLLA improvement of the shortest and secure routing from black hole attack in MANET. In addition, the results indicate better performance than the related works algorithm with respect to all metrics excluding throughput which AntNet is best in routing when the pause time be more than 40 seconds. PGODLLA is able to improve the route discovery against the black hole attacks in AODV. Experiments in this thesis have shown that PGO-DLLA is able to reduce the normalized routing load, end-to-end delay, and packet loss and has a good throughput and packet delivery ratio when compared with the standard AODV protocol, BAODV protocol, and the current related protocols that enhance the routing security of the AODV protocols
    corecore