857 research outputs found

    Solving set optimization problems by cardinality optimization via weak constraints with an application to argumentation

    Get PDF
    Optimization—minimization or maximization—in the lattice of subsets is a frequent operation in Artificial Intelligence tasks. Examples are subset-minimal model-based diagnosis, nonmonotonic reasoning by means of circumscription, or preferred extensions in abstract argumentation. Finding the optimum among many admissible solutions is often harder than finding admissible solutions with respect to both computational complexity and methodology. This paper addresses the former issue by means of an effective method for finding subset-optimal solutions. It is based on the relationship between cardinality-optimal and subset-optimal solutions, and the fact that many logic-based declarative programming systems provide constructs for finding cardinality-optimal solutions, for example maximum satisfiability (MaxSAT) or weak constraints in Answer Set Programming (ASP). Clearly each cardinality-optimal solution is also a subset-optimal one, and if the language also allows for the addition of particular restricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions can be found by an iterative computation of cardinality-optimal solutions. As a showcase, the computation of preferred extensions of abstract argumentation frameworks using the proposed method is studied

    Solving Set Optimization Problems by Cardinality Optimization with an Application to Argumentation

    Get PDF
    Optimization—minimization or maximization—in the lattice of subsets is a frequent operation in Artificial Intelligence tasks. Examples are subset-minimal model-based diagnosis, nonmonotonic reasoning by means of circumscription, or preferred extensions in abstract argumentation. Finding the optimum among many admissible solutions is often harder than finding admissible solutions with respect to both computational complexity and methodology. This paper addresses the former issue by means of an effective method for finding subset-optimal solutions. It is based on the relationship between cardinality-optimal and subset-optimal solutions, and the fact that many logic-based declarative programming systems provide constructs for finding cardinality-optimal solutions, for example maximum satisfiability (MaxSAT) or weak constraints in Answer Set Programming (ASP). Clearly each cardinality-optimal solution is also a subset-optimal one, and if the language also allows for the addition of particular restricting constructs (both MaxSAT and ASP do) then all subset-optimal solutions can be found by an iterative computation of cardinality-optimal solutions. As a showcase, the computation of preferred extensions of abstract argumentation frameworks using the proposed method is studied

    MaxSAT Evaluation 2022 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    A general framework for stable roommates problems using answer set programming

    Get PDF
    The Stable Roommates problem (SR) is characterized by the preferences of agents over other agents as roommates: each agent ranks all others in strict order of preference. A solution to SR is then a partition of the agents into pairs so that each pair shares a room, and there is no pair of agents that would block this matching (i.e., who prefers the other to their roommate in the matching). There are interesting variations of SR that are motivated by applications (e.g., the preference lists may be incomplete (SRI) and involve ties (SRTI)), and that try to find a more fair solution (e.g., Egalitarian SR). Unlike the Stable Marriage problem, every SR instance is not guaranteed to have a solution. For that reason, there are also variations of SR that try to find a good-enough solution (e.g., Almost SR). Most of these variations are NP-hard. We introduce a formal framework, called SRTI-ASP, utilizing the logic programming paradigm Answer Set Programming, that is provable and general enough to solve many of such variations of SR. Our empirical analysis shows that SRTI-ASP is also promising for applications

    Enforcement in Abstract Argumentation via Boolean Optimization

    Get PDF
    Computational aspects of argumentation are a central research topic of modern artificial intelligence. A core formal model for argumentation, where the inner structure of arguments is abstracted away, was provided by Dung in the form of abstract argumentation frameworks (AFs). AFs are syntactically directed graphs with the nodes representing arguments and edges representing attacks between them. Given the AF, sets of jointly acceptable arguments or extensions are defined via different semantics. The computational complexity and algorithmic solutions to so-called static problems, such as the enumeration of extensions, is a well-studied topic. Since argumentation is a dynamic process, understanding the dynamic aspects of AFs is also important. However, computational aspects of dynamic problems have not been studied thoroughly. This work concentrates on different forms of enforcement, which is a core dynamic problem in the area of abstract argumentation. In this case, given an AF, one wants to modify it by adding and removing attacks in a way that a given set of arguments becomes an extension (extension enforcement) or that given arguments are credulously or skeptically accepted (status enforcement). In this thesis, the enforcement problem is viewed as a constrained optimization task where the change to the attack structure is minimized. The computational complexity of the extension and status enforcement problems is analyzed, showing that they are in the general case NP-hard optimization problems. Motivated by this, algorithms are presented based on the Boolean optimization paradigm of maximum satisfiability (MaxSAT) for the NP-complete variants, and counterexample-guided abstraction refinement (CEGAR) procedures, where an interplay between MaxSAT and Boolean satisfiability (SAT) solvers is utilized, for problems beyond NP. The algorithms are implemented in the open source software system Pakota, which is empirically evaluated on randomly generated enforcement instances

    How we designed winning algorithms for abstract argumentation and which insight we attained

    Get PDF
    In this paper we illustrate the design choices that led to the development of ArgSemSAT, the winner of the preferred semantics track at the 2017 International Competition on Computational Models of Arguments (ICCMA 2017), a biennial contest on problems associated to the Dung’s model of abstract argumentation frameworks, widely recognised as a fundamental reference in computational argumentation. The algorithms of ArgSemSAT are based on multiple calls to a SAT solver to compute complete labellings, and on encoding constraints to drive the search towards the solution of decision and enumeration problems. In this paper we focus on preferred semantics (and incidentally stable as well), one of the most popular and complex semantics for identifying acceptable arguments. We discuss our design methodology that includes a systematic exploration and empirical evaluation of labelling encodings, algorithmic variations and SAT solver choices. In designing the successful ArgSemSAT, we discover that: (1) there is a labelling encoding that appears to be universally better than other, logically equivalent ones; (2) composition of different techniques such as AllSAT and enumerating stable extensions when searching for preferred semantics brings advantages; (3) injecting domain specific knowledge in the algorithm design can lead to significant improvements
    • …
    corecore