15,657 research outputs found

    Integration of Biological Sources: Exploring the Case of Protein Homology

    Get PDF
    Data integration is a key issue in the domain of bioin- formatics, which deals with huge amounts of heteroge- neous biological data that grows and changes rapidly. This paper serves as an introduction in the field of bioinformatics and the biological concepts it deals with, and an exploration of the integration problems a bioinformatics scientist faces. We examine ProGMap, an integrated protein homology system used by bioin- formatics scientists at Wageningen University, and several use cases related to protein homology. A key issue we identify is the huge manual effort required to unify source databases into a single resource. Un- certain databases are able to contain several possi- ble worlds, and it has been proposed that they can be used to significantly reduce initial integration efforts. We propose several directions for future work where uncertain databases can be applied to bioinformatics, with the goal of furthering the cause of bioinformatics integration

    Service-oriented coordination platform for technology-enhanced learning

    Get PDF
    It is currently difficult to coordinate learning processes, not only because multiple stakeholders are involved (such as students, teachers, administrative staff, technical staff), but also because these processes are driven by sophisticated rules (such as rules on how to provide learning material, rules on how to assess students’ progress, rules on how to share educational responsibilities). This is one of the reasons for the slow progress in technology-enhanced learning. Consequently, there is a clear demand for technological facilitation of the coordination of learning processes. In this work, we suggest some solution directions that are based on SOA (Service-Oriented Architecture). In particular, we propose a coordination service pattern consistent with SOA and based on requirements that follow from an analysis of both learning processes and potentially useful support technologies. We present the service pattern considering both functional and non-functional issues, and we address policy enforcement as well. Finally, we complement our proposed architecture-level solution directions with an example. The example illustrates our ideas and is also used to identify: (i) a short list of educational IT services; (ii) related non-functional concerns; they will be considered in future work

    Supporting End-User Development through a New Composition Model: An Empirical Study

    Get PDF
    End-user development (EUD) is much hyped, and its impact has outstripped even the most optimistic forecasts. Even so, the vision of end users programming their own solutions has not yet materialized. This will continue to be so unless we in both industry and the research community set ourselves the ambitious challenge of devising end to end an end-user application development model for developing a new age of EUD tools. We have embarked on this venture, and this paper presents the main insights and outcomes of our research and development efforts as part of a number of successful EU research projects. Our proposal not only aims to reshape software engineering to meet the needs of EUD but also to refashion its components as solution building blocks instead of programs and software developments. This way, end users will really be empowered to build solutions based on artefacts akin to their expertise and understanding of ideal solution

    Journalistic Knowledge Platforms: from Idea to Realisation

    Get PDF
    Journalistiske kunnskapsplattformer (JKPer) er en type intelligente informasjonssystemer designet for å forbedre nyhetsproduksjonsprosesser ved å kombinere stordata, kunstig intelligens (KI) og kunnskapsbaser for å støtte journalister. Til tross for sitt potensial for å revolusjonere journalistikkfeltet, har adopsjonen av JKPer vært treg, med forskere og store nyhetsutløp involvert i forskning og utvikling av JKPer. Den langsomme adopsjonen kan tilskrives den tekniske kompleksiteten til JKPer, som har ført til at nyhetsorganisasjoner stoler på flere uavhengige og oppgavespesifikke produksjonssystemer. Denne situasjonen kan øke ressurs- og koordineringsbehovet og kostnadene, samtidig som den utgjør en trussel om å miste kontrollen over data og havne i leverandørlåssituasjoner. De tekniske kompleksitetene forblir en stor hindring, ettersom det ikke finnes en allerede godt utformet systemarkitektur som ville lette realiseringen og integreringen av JKPer på en sammenhengende måte over tid. Denne doktoravhandlingen bidrar til teorien og praksisen rundt kunnskapsgrafbaserte JKPer ved å studere og designe en programvarearkitektur som referanse for å lette iverksettelsen av konkrete løsninger og adopsjonen av JKPer. Den første bidraget til denne doktoravhandlingen gir en grundig og forståelig analyse av ideen bak JKPer, fra deres opprinnelse til deres nåværende tilstand. Denne analysen gir den første studien noensinne av faktorene som har bidratt til den langsomme adopsjonen, inkludert kompleksiteten i deres sosiale og tekniske aspekter, og identifiserer de største utfordringene og fremtidige retninger for JKPer. Den andre bidraget presenterer programvarearkitekturen som referanse, som gir en generisk blåkopi for design og utvikling av konkrete JKPer. Den foreslåtte referansearkitekturen definerer også to nye typer komponenter ment for å opprettholde og videreutvikle KI-modeller og kunnskapsrepresentasjoner. Den tredje presenterer et eksempel på iverksettelse av programvarearkitekturen som referanse og beskriver en prosess for å forbedre effektiviteten til informasjonsekstraksjonspipelines. Denne rammen muliggjør en fleksibel, parallell og samtidig integrering av teknikker for naturlig språkbehandling og KI-verktøy. I tillegg diskuterer denne avhandlingen konsekvensene av de nyeste KI-fremgangene for JKPer og ulike etiske aspekter ved bruk av JKPer. Totalt sett gir denne PhD-avhandlingen en omfattende og grundig analyse av JKPer, fra teorien til designet av deres tekniske aspekter. Denne forskningen tar sikte på å lette vedtaket av JKPer og fremme forskning på dette feltet.Journalistic Knowledge Platforms (JKPs) are a type of intelligent information systems designed to augment news creation processes by combining big data, artificial intelligence (AI) and knowledge bases to support journalists. Despite their potential to revolutionise the field of journalism, the adoption of JKPs has been slow, with scholars and large news outlets involved in the research and development of JKPs. The slow adoption can be attributed to the technical complexity of JKPs that led news organisation to rely on multiple independent and task-specific production system. This situation can increase the resource and coordination footprint and costs, at the same time it poses a threat to lose control over data and face vendor lock-in scenarios. The technical complexities remain a major obstacle as there is no existing well-designed system architecture that would facilitate the realisation and integration of JKPs in a coherent manner over time. This PhD Thesis contributes to the theory and practice on knowledge-graph based JKPs by studying and designing a software reference architecture to facilitate the instantiation of concrete solutions and the adoption of JKPs. The first contribution of this PhD Thesis provides a thorough and comprehensible analysis of the idea of JKPs, from their origins to their current state. This analysis provides the first-ever study of the factors that have contributed to the slow adoption, including the complexity of their social and technical aspects, and identifies the major challenges and future directions of JKPs. The second contribution presents the software reference architecture that provides a generic blueprint for designing and developing concrete JKPs. The proposed reference architecture also defines two novel types of components intended to maintain and evolve AI models and knowledge representations. The third presents an instantiation example of the software reference architecture and details a process for improving the efficiency of information extraction pipelines. This framework facilitates a flexible, parallel and concurrent integration of natural language processing techniques and AI tools. Additionally, this Thesis discusses the implications of the recent AI advances on JKPs and diverse ethical aspects of using JKPs. Overall, this PhD Thesis provides a comprehensive and in-depth analysis of JKPs, from the theory to the design of their technical aspects. This research aims to facilitate the adoption of JKPs and advance research in this field.Doktorgradsavhandlin

    Processpatching: defining new methods in aRt&D

    Full text link
    In the context of a rapidly changing domain of contemporary electronic art practice- where the speed of technological innovation and the topicality of art 'process as research' methods are both under constant revision- the process of collaboration between art, computer science and engineering is an important addition to existing 'R&D'. Scholarly as well as practical exploration of artistic methods, viewed in relation to the field of new technology, can be seen to enable and foster innovation in both the conceptualisation and practice of the electronic arts. At the same time, citing new media art in the context of technological innovation brings a mix of scientific and engineering issues to the fore and thereby demands an extended functionality that may lead to R&D, as technology attempts to take account of aesthetic and social considerations in its re-development. This new field of new media or electronic art R&D is different from research and development aimed at practical applications of new technologies as we see them in everyday life. A next step for Research and Development in Art (aRt&D) is a formalisation of the associated work methods, as an essential ingredient for interdisciplinary collaboration. This study investigates how electronic art patches together processes and methods from the arts, engineering and computer science environments. It provides a framework describing the electronic art methods to improve collaboration by informing others about one's artistic research and development approach. This investigation is positioned in the electronic art laboratory where new alliances with other disciplines are established. It provides information about the practical and theoretical aspects of the research and development processes of artists. The investigation addresses fundamental questions about the 'research and development methods' (discussed and defined at length in these pages), of artists who are involved in interdisciplinary collaborations amongst and between the fields of Art, Computer Science, and Engineering. The breadth of the fields studied necessarily forced a tight focus on specific issues in the literature, addressed herein through a series of focused case studies which demonstrate the points of synergy and divergence between the fields of artistic research and development, in a wider art&D' context. The artistic methods proposed in this research include references from a broad set of fields (e. g. Technology, Media Arts, Theatre and Performance, Systems Theories, the Humanities, and Design Practice) relevant to and intrinsically intertwined with this project and its placement in an interdisciplinary knowledge domain. The aRt&D Matrix provides a complete overview of the observed research and development methods in electronic arts, including references to related disciplines and methods from other fields. The new Matrix developed and offered in this thesis also provides an instrument for analysing the interdisciplinary collaboration process that exclusively reflects the information we need for the overview of the team constellation. The tool is used to inform the collaborators about the backgrounds of the other participants and thus about the expected methods and approaches. It provides a map of the bodies of knowledge and expertise represented in any given cross-disciplinary team, and thus aims to lay the groundwork for a future aRt&D framework of use to future scholars and practitioners alike

    Improving National and Homeland Security through a proposed Laboratory for Information Globalization and Harmonization Technologies (LIGHT)

    Get PDF
    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access tools to enable interoperation with other databases and the extraction of meaningful and timely information" [NRC02, p.304, emphasis added] That sentence succinctly describes the objectives of this project. Improved access and use of information are essential to better identify and anticipate threats, protect against and respond to threats, and enhance national and homeland security (NHS), as well as other national priority areas, such as Economic Prosperity and a Vibrant Civil Society (ECS) and Advances in Science and Engineering (ASE). This project focuses on the creation and contributions of a Laboratory for Information Globalization and Harmonization Technologies (LIGHT) with two interrelated goals: (1) Theory and Technologies: To research, design, develop, test, and implement theory and technologies for improving the reliability, quality, and responsiveness of automated mechanisms for reasoning and resolving semantic differences that hinder the rapid and effective integration (int) of systems and data (dmc) across multiple autonomous sources, and the use of that information by public and private agencies involved in national and homeland security and the other national priority areas involving complex and interdependent social systems (soc). This work builds on our research on the COntext INterchange (COIN) project, which focused on the integration of diverse distributed heterogeneous information sources using ontologies, databases, context mediation algorithms, and wrapper technologies to overcome information representational conflicts. The COIN approach makes it substantially easier and more transparent for individual receivers (e.g., applications, users) to access and exploit distributed sources. Receivers specify their desired context to reduce ambiguities in the interpretation of information coming from heterogeneous sources. This approach significantly reduces the overhead involved in the integration of multiple sources, improves data quality, increases the speed of integration, and simplifies maintenance in an environment of changing source and receiver context - which will lead to an effective and novel distributed information grid infrastructure. This research also builds on our Global System for Sustainable Development (GSSD), an Internet platform for information generation, provision, and integration of multiple domains, regions, languages, and epistemologies relevant to international relations and national security. (2) National Priority Studies: To experiment with and test the developed theory and technologies on practical problems of data integration in national priority areas. Particular focus will be on national and homeland security, including data sources about conflict and war, modes of instability and threat, international and regional demographic, economic, and military statistics, money flows, and contextualizing terrorism defense and response. Although LIGHT will leverage the results of our successful prior research projects, this will be the first research effort to simultaneously and effectively address ontological and temporal information conflicts as well as dramatically enhance information quality. Addressing problems of national priorities in such rapidly changing complex environments requires extraction of observations from disparate sources, using different interpretations, at different points in times, for different purposes, with different biases, and for a wide range of different uses and users. This research will focus on integrating information both over individual domains and across multiple domains. Another innovation is the concept and implementation of Collaborative Domain Spaces (CDS), within which applications in a common domain can share, analyze, modify, and develop information. Applications also can span multiple domains via Linked CDSs. The PIs have considerable experience with these research areas and the organization and management of such large scale international and diverse research projects. The PIs come from three different Schools at MIT: Management, Engineering, and Humanities, Arts & Social Sciences. The faculty and graduate students come from about a dozen nationalities and diverse ethnic, racial, and religious backgrounds. The currently identified external collaborators come from over 20 different organizations and many different countries, industrial as well as developing. Specific efforts are proposed to engage even more women, underrepresented minorities, and persons with disabilities. The anticipated results apply to any complex domain that relies on heterogeneous distributed data to address and resolve compelling problems. This initiative is supported by international collaborators from (a) scientific and research institutions, (b) business and industry, and (c) national and international agencies. Research products include: a System for Harmonized Information Processing (SHIP), a software platform, and diverse applications in research and education which are anticipated to significantly impact the way complex organizations, and society in general, understand and manage critical challenges in NHS, ECS, and ASE
    corecore