228,800 research outputs found

    On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation

    Get PDF
    We investigate the influence of the shape parameter in the meshless Gaussian RBF finite difference method with irregular centres on the quality of the approximation of the Dirichlet problem for the Poisson equation with smooth solution. Numerical experiments show that the optimal shape parameter strongly depends on the problem, but insignificantly on the density of the centres. Therefore, we suggest a multilevel algorithm that effectively finds near-optimal shape parameter, which helps to significantly reduce the error. Comparison to the finite element method and to the generalised finite differences obtained in the flat limits of the Gaussian RBF is provided

    Order-of-Magnitude Influence Diagrams

    Get PDF
    In this paper, we develop a qualitative theory of influence diagrams that can be used to model and solve sequential decision making tasks when only qualitative (or imprecise) information is available. Our approach is based on an order-of-magnitude approximation of both probabilities and utilities and allows for specifying partially ordered preferences via sets of utility values. We also propose a dedicated variable elimination algorithm that can be applied for solving order-of-magnitude influence diagrams

    Estimating Maximally Probable Constrained Relations by Mathematical Programming

    Full text link
    Estimating a constrained relation is a fundamental problem in machine learning. Special cases are classification (the problem of estimating a map from a set of to-be-classified elements to a set of labels), clustering (the problem of estimating an equivalence relation on a set) and ranking (the problem of estimating a linear order on a set). We contribute a family of probability measures on the set of all relations between two finite, non-empty sets, which offers a joint abstraction of multi-label classification, correlation clustering and ranking by linear ordering. Estimating (learning) a maximally probable measure, given (a training set of) related and unrelated pairs, is a convex optimization problem. Estimating (inferring) a maximally probable relation, given a measure, is a 01-linear program. It is solved in linear time for maps. It is NP-hard for equivalence relations and linear orders. Practical solutions for all three cases are shown in experiments with real data. Finally, estimating a maximally probable measure and relation jointly is posed as a mixed-integer nonlinear program. This formulation suggests a mathematical programming approach to semi-supervised learning.Comment: 16 page

    Solving Set Constraint Satisfaction Problems using ROBDDs

    Full text link
    In this paper we present a new approach to modeling finite set domain constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We show that it is possible to construct an efficient set domain propagator which compactly represents many set domains and set constraints using ROBDDs. We demonstrate that the ROBDD-based approach provides unprecedented flexibility in modeling constraint satisfaction problems, leading to performance improvements. We also show that the ROBDD-based modeling approach can be extended to the modeling of integer and multiset constraint problems in a straightforward manner. Since domain propagation is not always practical, we also show how to incorporate less strict consistency notions into the ROBDD framework, such as set bounds, cardinality bounds and lexicographic bounds consistency. Finally, we present experimental results that demonstrate the ROBDD-based solver performs better than various more conventional constraint solvers on several standard set constraint problems

    Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces

    Get PDF
    This paper transfers a randomized algorithm, originally used in geometric optimization, to computational problems in commutative algebra. We show that Clarkson's sampling algorithm can be applied to two problems in computational algebra: solving large-scale polynomial systems and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of G\"artner et al.\ applies to polynomial ideal problems. To show this, one utilizes a Helly-type result for algebraic varieties. The resulting algorithms have expected runtime linear in the number of input polynomials, making the ideas interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange
    corecore