60 research outputs found

    Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations

    Get PDF
    In the last 15 years periodic timetable problems have found much interest in the combinatorial optimization community. We will focus on the optimisation task to minimise a weighted sum of undesirable slack times. This problem can be formulated as a mixed integer linear problem, which for real world instances is hard to solve. This is mainly caused by the integer variables, the so-called modulo parameter. At first we will discuss some results on the polyhedral structure of the periodic timetable problem. These ideas allow to define a modulo simplex basic solution by calculating the basic variables from modulo equations. This leads to a modulo network simplex method, which iteratively improves the solution by changing the simplex basis

    A Phase I Simplex Method for Finding Feasible Periodic Timetables

    Get PDF
    The periodic event scheduling problem (PESP) with various applications in timetabling or traffic light scheduling is known to be challenging to solve. In general, it is already NP-hard to find a feasible solution. However, depending on the structure of the underlying network and the values of lower and upper bounds on activities, this might also be an easy task. In this paper we make use of this property and suggest phase I approaches (similar to the well-known phase I of the simplex algorithm) to find a feasible solution to PESP. Given an instance of PESP, we define an auxiliary instance for which a feasible solution can easily be constructed, and whose solution determines a feasible solution of the original instance or proves that the original instance is not feasible. We investigate different possibilities on how such an auxiliary instance can be defined theoretically and experimentally. Furthermore, in our experiments we compare different solution approaches for PESP and their behavior in the phase I approach. The results show that this approach can be especially helpful if the instance admits a feasible solution, while it is generally outperformed by classic mixed-integer programming formulations when the instance is infeasible

    A Matching Approach for Periodic Timetabling

    Get PDF
    The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard, but with important applications mainly for finding good timetables in public transportation. In this paper we consider PESP in public transportation, but in a reduced version (r-PESP) in which the driving and waiting times of the vehicles are fixed to their lower bounds. This results in a still NP-hard problem which has less variables, since only one variable determines the schedule for a whole line. We propose a formulation for r-PESP which is based on scheduling the lines. This enables us on the one hand to identify a finite candidate set and an exact solution approach. On the other hand, we use this formulation to derive a matching-based heuristic for solving PESP. Our experiments on close to real-world instances from LinTim show that our heuristic is able to compute competitive timetables in a very short runtime

    An Improved Algorithm for the Periodic Timetabling Problem

    Get PDF
    We consider the computation of periodic timetables, which is a key task in the service design process of public transportation companies. We propose a new approach for solving the periodic timetable optimisation problem. It consists of a (partially) heuristic network aggregation to reduce the problem size and make it accessible to standard mixed-integer programming (MIP) solvers. We alternate the invocation of a MIP solver with the well-known problem specific modulo network simplex heuristic (ModSim). This iterative approach helps the ModSim-method to overcome local minima efficiently, and provides the MIP solver with better initial solutions. Our computational experiments are based on the 16 railway instances of the PESPlib, which is the only currently available collection of periodic event scheduling problem instances. For each of these instances, we are able to reduce the objective values of previously best known solutions by at least 10.0%, and up to 22.8% with our iterative combined method

    Tree decomposition methods for the periodic event scheduling problem

    Get PDF
    This paper proposes an algorithm that decomposes the Periodic Event Scheduling Problem (PESP) into trees that can efficiently be solved. By identifying at an early stage which partial solutions can lead to a feasible solution, the decomposed components can be integrated back while maintaining feasibility if possible. If not, the modifications required to regain feasibility can be found efficiently. These techniques integrate dynamic programming into standard search methods. The performance of these heuristics are very satisfying, as the problem using publicly available benchmarks can be solved within a reasonable amount of time, in an alternative way than the currently accepted leading-edge techniques. Furthermore, these heuristics do not necessarily rely on linearity of the objective function, which facilitates the research of timetabling under nonlinear circumstances

    Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

    Get PDF

    Solving the Periodic Scheduling Problem: An Assignment Approach in Non-Periodic Networks

    Get PDF
    The periodic event scheduling problem (PESP) is a well researched problem used for finding good periodic timetables in public transport. While it is based on a periodic network consisting of events and activities which are repeated every period, we propose a new periodic timetabling model using a non-periodic network. This is a first step towards the goal of integrating periodic timetabling with other planning steps taking place in the aperiodic network, e.g. passenger assignment or delay management. In this paper, we develop the new model, show how we can reduce its size and prove its equivalence to PESP. We also conduct computational experiments on close-to real-world data from Lower Saxony, a region in northern Germany, and see that the model can be solved in a reasonable amount of time

    Separation of Cycle Inequalities for the Periodic Timetabling Problem

    Get PDF
    Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem

    An adjustable robust optimization approach for periodic timetabling

    Get PDF
    In this paper, we consider the Robust Periodic Timetabling Problem (RPTP), the problem of designing a periodic timetable that can easily be adjusted in case of small periodic disturbances. We develop a solution method for a parametrized class of uncertainty regions. This class relates closely to uncertainty regions known in the robust optimization literature, and naturally defines a metric for the robustness of the timetable. The proposed solution method combines a linear decision rule with well-known reformulation techniques and cutting-plane methods. We show that the RPTP can be solved for practical-sized instances by applying the solution method to practical cases of Netherlands Railways (NS). In particular, we show that the trade-off between the efficiency and robustness of a timetable can be analyzed using our solution method
    • …
    corecore