2,047 research outputs found

    Solving parity games: Explicit vs symbolic

    Get PDF
    In this paper we provide a broad investigation of the symbolic approach for solving Parity Games. Specifically, we implement in a fresh tool, called, four symbolic algorithms to solve Parity Games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been

    A Comparison of BDD-Based Parity Game Solvers

    Full text link
    Parity games are two player games with omega-winning conditions, played on finite graphs. Such games play an important role in verification, satisfiability and synthesis. It is therefore important to identify algorithms that can efficiently deal with large games that arise from such applications. In this paper, we describe our experiments with BDD-based implementations of four parity game solving algorithms, viz. Zielonka's recursive algorithm, the more recent Priority Promotion algorithm, the Fixpoint-Iteration algorithm and the automata based APT algorithm. We compare their performance on several types of random games and on a number of cases taken from the Keiren benchmark set.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    Succinct progress measures for solving parity games

    Get PDF
    The recent breakthrough paper by Calude et al. has given the first algorithm for solving parity games in quasi-polynomial time, where previously the best algorithms were mildly subexponential. We devise an alternative quasi-polynomial time algorithm based on progress measures, which allows us to reduce the space required from quasi-polynomial to nearly linear. Our key technical tools are a novel concept of ordered tree coding, and a succinct tree coding result that we prove using bounded adaptive multi-counters, both of which are interesting in their own right

    How Much Lookahead is Needed to Win Infinite Games?

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. For ω\omega-regular winning conditions it is known that such games can be solved in doubly-exponential time and that doubly-exponential lookahead is sufficient. We improve upon both results by giving an exponential time algorithm and an exponential upper bound on the necessary lookahead. This is complemented by showing EXPTIME-hardness of the solution problem and tight exponential lower bounds on the lookahead. Both lower bounds already hold for safety conditions. Furthermore, solving delay games with reachability conditions is shown to be PSPACE-complete. This is a corrected version of the paper https://arxiv.org/abs/1412.3701v4 published originally on August 26, 2016

    Solving Parity Games in Scala

    Get PDF
    Parity games are two-player games, played on directed graphs, whose nodes are labeled with priorities. Along a play, the maximal priority occurring infinitely often determines the winner. In the last two decades, a variety of algorithms and successive optimizations have been proposed. The majority of them have been implemented in PGSolver, written in OCaml, which has been elected by the community as the de facto platform to solve efficiently parity games as well as evaluate their performance in several specific cases. PGSolver includes the Zielonka Recursive Algorithm that has been shown to perform better than the others in randomly generated games. However, even for arenas with a few thousand of nodes (especially over dense graphs), it requires minutes to solve the corresponding game. In this paper, we deeply revisit the implementation of the recursive algorithm introducing several improvements and making use of Scala Programming Language. These choices have been proved to be very successful, gaining up to two orders of magnitude in running time

    Robust Exponential Worst Cases for Divide-et-Impera Algorithms for Parity Games

    Get PDF
    The McNaughton-Zielonka divide et impera algorithm is the simplest and most flexible approach available in the literature for determining the winner in a parity game. Despite its theoretical worst-case complexity and the negative reputation as a poorly effective algorithm in practice, it has been shown to rank among the best techniques for the solution of such games. Also, it proved to be resistant to a lower bound attack, even more than the strategy improvements approaches, and only recently a family of games on which the algorithm requires exponential time has been provided by Friedmann. An easy analysis of this family shows that a simple memoization technique can help the algorithm solve the family in polynomial time. The same result can also be achieved by exploiting an approach based on the dominion-decomposition techniques proposed in the literature. These observations raise the question whether a suitable combination of dynamic programming and game-decomposition techniques can improve on the exponential worst case of the original algorithm. In this paper we answer this question negatively, by providing a robustly exponential worst case, showing that no intertwining of the above mentioned techniques can help mitigating the exponential nature of the divide et impera approaches.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    Parity and Streett Games with Costs

    Get PDF
    We consider two-player games played on finite graphs equipped with costs on edges and introduce two winning conditions, cost-parity and cost-Streett, which require bounds on the cost between requests and their responses. Both conditions generalize the corresponding classical omega-regular conditions and the corresponding finitary conditions. For parity games with costs we show that the first player has positional winning strategies and that determining the winner lies in NP and coNP. For Streett games with costs we show that the first player has finite-state winning strategies and that determining the winner is EXPTIME-complete. The second player might need infinite memory in both games. Both types of games with costs can be solved by solving linearly many instances of their classical variants.Comment: A preliminary version of this work appeared in FSTTCS 2012 under the name "Cost-parity and Cost-Streett Games". The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements 259454 (GALE) and 239850 (SOSNA
    corecore