76,851 research outputs found

    Exact Solutions in Log-Concave Maximum Likelihood Estimation

    Full text link
    We study probability density functions that are log-concave. Despite the space of all such densities being infinite-dimensional, the maximum likelihood estimate is the exponential of a piecewise linear function determined by finitely many quantities, namely the function values, or heights, at the data points. We explore in what sense exact solutions to this problem are possible. First, we show that the heights given by the maximum likelihood estimate are generically transcendental. For a cell in one dimension, the maximum likelihood estimator is expressed in closed form using the generalized W-Lambert function. Even more, we show that finding the log-concave maximum likelihood estimate is equivalent to solving a collection of polynomial-exponential systems of a special form. Even in the case of two equations, very little is known about solutions to these systems. As an alternative, we use Smale's alpha-theory to refine approximate numerical solutions and to certify solutions to log-concave density estimation.Comment: 29 pages, 5 figure

    On the parallel solution of parabolic equations

    Get PDF
    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented

    Design of First-Order Optimization Algorithms via Sum-of-Squares Programming

    Full text link
    In this paper, we propose a framework based on sum-of-squares programming to design iterative first-order optimization algorithms for smooth and strongly convex problems. Our starting point is to develop a polynomial matrix inequality as a sufficient condition for exponential convergence of the algorithm. The entries of this matrix are polynomial functions of the unknown parameters (exponential decay rate, stepsize, momentum coefficient, etc.). We then formulate a polynomial optimization, in which the objective is to optimize the exponential decay rate over the parameters of the algorithm. Finally, we use sum-of-squares programming as a tractable relaxation of the proposed polynomial optimization problem. We illustrate the utility of the proposed framework by designing a first-order algorithm that shares the same structure as Nesterov's accelerated gradient method

    Limit Your Consumption! Finding Bounds in Average-energy Games

    Get PDF
    Energy games are infinite two-player games played in weighted arenas with quantitative objectives that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem description. Here, we consider the problem of determining upper bounds on the average accumulated energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the classical setting with positive and negative weights, we show that the problem of determining the existence of a sufficient bound on the long-run average accumulated energy can be solved in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but there are recharge edges that recharge the energy to some fixed capacity. We show that bounding the long-run average energy in such games is complete for exponential time. Then, we consider the existential version of the problem, which turns out to be solvable in polynomial time: here, we ask whether there is a recharge capacity that allows the system player to win the game. We conclude by studying tradeoffs between the memory needed to implement strategies and the bounds they realize. We give an example showing that memory can be traded for bounds and vice versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    Stochastic filtering via L2 projection on mixture manifolds with computer algorithms and numerical examples

    Get PDF
    We examine some differential geometric approaches to finding approximate solutions to the continuous time nonlinear filtering problem. Our primary focus is a new projection method for the optimal filter infinite dimensional Stochastic Partial Differential Equation (SPDE), based on the direct L2 metric and on a family of normal mixtures. We compare this method to earlier projection methods based on the Hellinger distance/Fisher metric and exponential families, and we compare the L2 mixture projection filter with a particle method with the same number of parameters, using the Levy metric. We prove that for a simple choice of the mixture manifold the L2 mixture projection filter coincides with a Galerkin method, whereas for more general mixture manifolds the equivalence does not hold and the L2 mixture filter is more general. We study particular systems that may illustrate the advantages of this new filter over other algorithms when comparing outputs with the optimal filter. We finally consider a specific software design that is suited for a numerically efficient implementation of this filter and provide numerical examples.Comment: Updated and expanded version published in the Journal reference below. Preprint updates: January 2016 (v3) added projection of Zakai Equation and difference with projection of Kushner-Stratonovich (section 4.1). August 2014 (v2) added Galerkin equivalence proof (Section 5) to the March 2013 (v1) versio
    corecore