69,395 research outputs found

    Feynman Diagrams and Differential Equations

    Full text link
    We review in a pedagogical way the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the general features of the technique, we discuss its application in the context of one- and two-loop corrections to the photon propagator in QED, by computing the Vacuum Polarization tensor exactly in D. Finally, we treat two cases of less trivial differential equations, respectively associated to a two-loop three-point, and a four-loop two-point integral. These two examples are the playgrounds for showing more technical aspects about: Laurent expansion of the differential equations in D (around D=4); the choice of the boundary conditions; and the link among differential and difference equations for Feynman integrals.Comment: invited review article from Int. J. Mod. Phys.

    Boosting the Maxwell double layer potential using a right spin factor

    Get PDF
    We construct new spin singular integral equations for solving scattering problems for Maxwell's equations, both against perfect conductors and in media with piecewise constant permittivity, permeability and conductivity, improving and extending earlier formulations by the author. These differ in a fundamental way from classical integral equations, which use double layer potential operators, and have the advantage of having a better condition number, in particular in Fredholm sense and on Lipschitz regular interfaces, and do not suffer from spurious resonances. The construction of the integral equations builds on the observation that the double layer potential factorises into a boundary value problem and an ansatz. We modify the ansatz, inspired by a non-selfadjoint local elliptic boundary condition for Dirac equations

    Differential Equations for Two-Loop Four-Point Functions

    Get PDF
    At variance with fully inclusive quantities, which have been computed already at the two- or three-loop level, most exclusive observables are still known only at one-loop, as further progress was hampered so far by the greater computational problems encountered in the study of multi-leg amplitudes beyond one loop. We show in this paper how the use of tools already employed in inclusive calculations can be suitably extended to the computation of loop integrals appearing in the virtual corrections to exclusive observables, namely two-loop four-point functions with massless propagators and up to one off-shell leg. We find that multi-leg integrals, in addition to integration-by-parts identities, obey also identities resulting from Lorentz-invariance. The combined set of these identities can be used to reduce the large number of integrals appearing in an actual calculation to a small number of master integrals. We then write down explicitly the differential equations in the external invariants fulfilled by these master integrals, and point out that the equations can be used as an efficient method of evaluating the master integrals themselves. We outline strategies for the solution of the differential equations, and demonstrate the application of the method on several examples.Comment: 26 pages, LaTeX; some explanatory comments added; several typos correcte

    Integration by parts identities in integer numbers of dimensions. A criterion for decoupling systems of differential equations

    Get PDF
    Integration by parts identities (IBPs) can be used to express large numbers of apparently different d-dimensional Feynman Integrals in terms of a small subset of so-called master integrals (MIs). Using the IBPs one can moreover show that the MIs fulfil linear systems of coupled differential equations in the external invariants. With the increase in number of loops and external legs, one is left in general with an increasing number of MIs and consequently also with an increasing number of coupled differential equations, which can turn out to be very difficult to solve. In this paper we show how studying the IBPs in fixed integer numbers of dimension d=n with n∈Nn \in \mathbb{N} one can extract the information useful to determine a new basis of MIs, whose differential equations decouple as d→nd \to n and can therefore be more easily solved as Laurent expansion in (d-n).Comment: 31 pages, minor typos corrected, references added, accepted for publication in Nuclear Physics

    High-precision calculation of multi-loop Feynman integrals by difference equations

    Full text link
    We describe a new method of calculation of generic multi-loop master integrals based on the numerical solution of systems of difference equations in one variable. We show algorithms for the construction of the systems using integration-by-parts identities and methods of solutions by means of expansions in factorial series and Laplace's transformation. We also describe new algorithms for the identification of master integrals and the reduction of generic Feynman integrals to master integrals, and procedures for generating and solving systems of differential equations in masses and momenta for master integrals. We apply our method to the calculation of the master integrals of massive vacuum and self-energy diagrams up to three loops and of massive vertex and box diagrams up to two loops. Implementation in a computer program of our approach is described. Important features of the implementation are: the ability to deal with hundreds of master integrals and the ability to obtain very high precision results expanded at will in the number of dimensions.Comment: 55 pages, 5 figures, LaTe

    Dynamical F(R)F(R) gravities

    Full text link
    It is offered that F(R)−F(R)-modified gravities can be considered as nonperturbative quantum effects arising from Einstein gravity. It is assumed that nonperturbative quantum effects gives rise to the fact that the connection becomes incompatible with the metric, the metric factors and the square of the connection in Einstein - Hilbert Lagrangian have nonperturbative additions. In the simplest approximation both additions can be considered as functions of one scalar field. The scalar field can be excluded from the Lagrangian obtaining F(R)−F(R)-gravity. The essence of quantum correction to the affine connection as a torsion is discussed.Comment: discussion on quantum corrections is adde
    • …
    corecore