41 research outputs found

    Advances in Extreme Learning Machines

    Get PDF
    Nowadays, due to advances in technology, data is generated at an incredible pace, resulting in large data sets of ever-increasing size and dimensionality. Therefore, it is important to have efficient computational methods and machine learning algorithms that can handle such large data sets, such that they may be analyzed in reasonable time. One particular approach that has gained popularity in recent years is the Extreme Learning Machine (ELM), which is the name given to neural networks that employ randomization in their hidden layer, and that can be trained efficiently. This dissertation introduces several machine learning methods based on Extreme Learning Machines (ELMs) aimed at dealing with the challenges that modern data sets pose. The contributions follow three main directions.    Firstly, ensemble approaches based on ELM are developed, which adapt to context and can scale to large data. Due to their stochastic nature, different ELMs tend to make different mistakes when modeling data. This independence of their errors makes them good candidates for combining them in an ensemble model, which averages out these errors and results in a more accurate model. Adaptivity to a changing environment is introduced by adapting the linear combination of the models based on accuracy of the individual models over time. Scalability is achieved by exploiting the modularity of the ensemble model, and evaluating the models in parallel on multiple processor cores and graphics processor units. Secondly, the dissertation develops variable selection approaches based on ELM and Delta Test, that result in more accurate and efficient models. Scalability of variable selection using Delta Test is again achieved by accelerating it on GPU. Furthermore, a new variable selection method based on ELM is introduced, and shown to be a competitive alternative to other variable selection methods. Besides explicit variable selection methods, also a new weight scheme based on binary/ternary weights is developed for ELM. This weight scheme is shown to perform implicit variable selection, and results in increased robustness and accuracy at no increase in computational cost. Finally, the dissertation develops training algorithms for ELM that allow for a flexible trade-off between accuracy and computational time. The Compressive ELM is introduced, which allows for training the ELM in a reduced feature space. By selecting the dimension of the feature space, the practitioner can trade off accuracy for speed as required.    Overall, the resulting collection of proposed methods provides an efficient, accurate and flexible framework for solving large-scale supervised learning problems. The proposed methods are not limited to the particular types of ELMs and contexts in which they have been tested, and can easily be incorporated in new contexts and models

    Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend

    Get PDF
    In spite of the prominence of extreme learning machine model, as well as its excellent features such as insignificant intervention for learning and model tuning, the simplicity of implementation, and high learning speed, which makes it a fascinating alternative method for Artificial Intelligence, including Big Data Analytics, it is still limited in certain aspects. These aspects must be treated to achieve an effective and cost-sensitive model. This review discussed the major drawbacks of ELM, which include difficulty in determination of hidden layer structure, prediction instability and Imbalanced data distributions, the poor capability of sample structure preserving (SSP), and difficulty in accommodating lateral inhibition by direct random feature mapping. Other drawbacks include multi-graph complexity, global memory size, one-by-one or chuck-by-chuck (a block of data), global memory size limitation, and challenges with big data. The recent trend proposed by experts for each drawback is discussed in detail towards achieving an effective and cost-sensitive mode

    Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics (JCC-BD&ET 2023)

    Get PDF
    Compilación de los short papers presentados en las 11vas Jornadas de Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET2023), llevadas a cabo en modalidad híbrida durante junio de 2023 y organizadas por el Instituto de Investigación en Informática LIDI (III-LIDI) y la Secretaría de Posgrado de la Facultad de Informática de la UNLP en colaboración con universidades de Argentina y del exterior.Facultad de Informátic

    Non-iterative and Fast Deep Learning: Multilayer Extreme Learning Machines

    Get PDF
    In the past decade, deep learning techniques have powered many aspects of our daily life, and drawn ever-increasing research interests. However, conventional deep learning approaches, such as deep belief network (DBN), restricted Boltzmann machine (RBM), and convolutional neural network (CNN), suffer from time-consuming training process due to fine-tuning of a large number of parameters and the complicated hierarchical structure. Furthermore, the above complication makes it difficult to theoretically analyze and prove the universal approximation of those conventional deep learning approaches. In order to tackle the issues, multilayer extreme learning machines (ML-ELM) were proposed, which accelerate the development of deep learning. Compared with conventional deep learning, ML-ELMs are non-iterative and fast due to the random feature mapping mechanism. In this paper, we perform a thorough review on the development of ML-ELMs, including stacked ELM autoencoder (ELM-AE), residual ELM, and local receptive field based ELM (ELM-LRF), as well as address their applications. In addition, we also discuss the connection between random neural networks and conventional deep learning

    Efficient multitemporal change detection techniques for hyperspectral images on GPU

    Get PDF
    Hyperspectral images contain hundreds of reflectance values for each pixel. Detecting regions of change in multiple hyperspectral images of the same scene taken at different times is of widespread interest for a large number of applications. For remote sensing, in particular, a very common application is land-cover analysis. The high dimensionality of the hyperspectral images makes the development of computationally efficient processing schemes critical. This thesis focuses on the development of change detection approaches at object level, based on supervised direct multidate classification, for hyperspectral datasets. The proposed approaches improve the accuracy of current state of the art algorithms and their projection onto Graphics Processing Units (GPUs) allows their execution in real-time scenarios

    Clustering: Methodology, hybrid systems, visualization, validation and implementation

    Get PDF
    Unsupervised learning is one of the most important steps of machine learning applications. Besides its ability to obtain the insight of the data distribution, unsupervised learning is used as a preprocessing step for other machine learning algorithm. This dissertation investigates the application of unsupervised learning into various types of data for many machine learning tasks such as clustering, regression and classification. The dissertation is organized into three papers. In the first paper, unsupervised learning is applied to mixed categorical and numerical feature data type to transform the data objects from the mixed type feature domain into a new sparser numerical domain. By making use of the data fusion capacity of adaptive resonance theory clustering, the approach is able to reduce the distinction between the numerical and categorical features. The second paper presents a novel method to improve the performance of wind forecast by clustering the time series of the surrounding wind mills into the similar group by using hidden Markov model clustering and using the clustering information to enhance the forecast. A fast forecast method is also introduced by using extreme learning machine which can be trained by analytic form to choose the optimal value of past samples for prediction and appropriate size of the neural network. In the third paper, unsupervised learning is used to automatically learn the feature from the dataset itself without human design of sophisticated feature extractors. The paper points out that by using unsupervised feature learning with multi-quadric radial basis function extreme learning machine the performance of the classifier is better than several other supervised learning methods. The paper further improves the speed of training the neural network by presenting an algorithm that runs parallel on GPU --Abstract, page iv

    SYSTEM-ON-A-CHIP (SOC)-BASED HARDWARE ACCELERATION FOR HUMAN ACTION RECOGNITION WITH CORE COMPONENTS

    Get PDF
    Today, the implementation of machine vision algorithms on embedded platforms or in portable systems is growing rapidly due to the demand for machine vision in daily human life. Among the applications of machine vision, human action and activity recognition has become an active research area, and market demand for providing integrated smart security systems is growing rapidly. Among the available approaches, embedded vision is in the top tier; however, current embedded platforms may not be able to fully exploit the potential performance of machine vision algorithms, especially in terms of low power consumption. Complex algorithms can impose immense computation and communication demands, especially action recognition algorithms, which require various stages of preprocessing, processing and machine learning blocks that need to operate concurrently. The market demands embedded platforms that operate with a power consumption of only a few watts. Attempts have been mad to improve the performance of traditional embedded approaches by adding more powerful processors; this solution may solve the computation problem but increases the power consumption. System-on-a-chip eld-programmable gate arrays (SoC-FPGAs) have emerged as a major architecture approach for improving power eciency while increasing computational performance. In a SoC-FPGA, an embedded processor and an FPGA serving as an accelerator are fabricated in the same die to simultaneously improve power consumption and performance. Still, current SoC-FPGA-based vision implementations either shy away from supporting complex and adaptive vision algorithms or operate at very limited resolutions due to the immense communication and computation demands. The aim of this research is to develop a SoC-based hardware acceleration workflow for the realization of advanced vision algorithms. Hardware acceleration can improve performance for highly complex mathematical calculations or repeated functions. The performance of a SoC system can thus be improved by using hardware acceleration method to accelerate the element that incurs the highest performance overhead. The outcome of this research could be used for the implementation of various vision algorithms, such as face recognition, object detection or object tracking, on embedded platforms. The contributions of SoC-based hardware acceleration for hardware-software codesign platforms include the following: (1) development of frameworks for complex human action recognition in both 2D and 3D; (2) realization of a framework with four main implemented IPs, namely, foreground and background subtraction (foreground probability), human detection, 2D/3D point-of-interest detection and feature extraction, and OS-ELM as a machine learning algorithm for action identication; (3) use of an FPGA-based hardware acceleration method to resolve system bottlenecks and improve system performance; and (4) measurement and analysis of system specications, such as the acceleration factor, power consumption, and resource utilization. Experimental results show that the proposed SoC-based hardware acceleration approach provides better performance in terms of the acceleration factor, resource utilization and power consumption among all recent works. In addition, a comparison of the accuracy of the framework that runs on the proposed embedded platform (SoCFPGA) with the accuracy of other PC-based frameworks shows that the proposed approach outperforms most other approaches

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Deep Learning, Shallow Dips: Transit light curves have never been so trendy

    Get PDF
    At the crossroad between photometry and time-domain astronomy, light curves are invaluable data objects to study distant events and sources of light even when they can not be spatially resolved. In particular, the field of exoplanet sciences has tremendously benefited from acquired stellar light curves to detect and characterise a majority of the outer worlds that we know today. Yet, their analysis is challenged by the astrophysical and instrumental noise often diluting the signals of interest. For instance, the detection of shallow dips caused by transiting exoplanets in stellar light curves typically require a precision of the order of 1 ppm to 100 ppm in units of stellar flux, and their very study directly depends upon our capacity to correct for instrumental and stellar trends. The increasing number of light curves acquired from space and ground-based telescopes—of the order of billions—opens up the possibility for global, efficient, automated processing algorithms to replace individual, parametric and hard-coded ones. Luckily, the field of deep learning is also progressing fast, revolutionising time series problems and applications. This reinforces the incentive to develop data-driven approaches hand-in-hand with existing scientific models and expertise. With the study of exoplanetary transits in focus, I developed automated approaches to learn and correct for the time-correlated noise in and across light curves. In particular, I present (i) a deep recurrent model trained via a forecasting objective to detrend individual transit light curves (e.g. from the Spitzer space telescope); (ii) the power of a Transformer-based model leveraging whole datasets of light curves (e.g. from large transit surveys) to learn the trend via a masked objective; (iii) a hybrid and flexible framework to combine neural networks with transit physics
    corecore