6,268 research outputs found

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    X-ray Astronomical Point Sources Recognition Using Granular Binary-tree SVM

    Full text link
    The study on point sources in astronomical images is of special importance, since most energetic celestial objects in the Universe exhibit a point-like appearance. An approach to recognize the point sources (PS) in the X-ray astronomical images using our newly designed granular binary-tree support vector machine (GBT-SVM) classifier is proposed. First, all potential point sources are located by peak detection on the image. The image and spectral features of these potential point sources are then extracted. Finally, a classifier to recognize the true point sources is build through the extracted features. Experiments and applications of our approach on real X-ray astronomical images are demonstrated. comparisons between our approach and other SVM-based classifiers are also carried out by evaluating the precision and recall rates, which prove that our approach is better and achieves a higher accuracy of around 89%.Comment: Accepted by ICSP201
    • …
    corecore