24,219 research outputs found

    Multiscale Astronomical Image Processing Based on Nonlinear Partial Differential Equations

    Get PDF
    Astronomical applications of recent advances in the field of nonastronomical image processing are presented. These innovative methods, applied to multiscale astronomical images, increase signal-to-noise ratio, do not smear point sources or extended diffuse structures, and are thus a highly useful preliminary step for detection of different features including point sources, smoothing of clumpy data, and removal of contaminants from background maps. We show how the new methods, combined with other algorithms of image processing, unveil fine diffuse structures while at the same time enhance detection of localized objects, thus facilitating interactive morphology studies and paving the way for the automated recognition and classification of different features. We have also developed a new application framework for astronomical image processing that implements some recent advances made in computer vision and modern image processing, along with original algorithms based on nonlinear partial differential equations. The framework enables the user to easily set up and customize an image-processing pipeline interactively; it has various common and new visualization features and provides access to many astronomy data archives. Altogether, the results presented here demonstrate the first implementation of a novel synergistic approach based on integration of image processing, image visualization, and image quality assessment

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    Kernel-based machine learning protocol for predicting DNA-binding proteins

    Get PDF
    DNA-binding proteins (DNA-BPs) play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Attempts have been made to identify DNA-BPs based on their sequence and structural information with moderate accuracy. Here we develop a machine learning protocol for the prediction of DNA-BPs where the classifier is Support Vector Machines (SVMs). Information used for classification is derived from characteristics that include surface and overall composition, overall charge and positive potential patches on the protein surface. In total 121 DNA-BPs and 238 non-binding proteins are used to build and evaluate the protocol. In self-consistency, accuracy value of 100% has been achieved. For cross-validation (CV) optimization over entire dataset, we report an accuracy of 90%. Using leave 1-pair holdout evaluation, the accuracy of 86.3% has been achieved. When we restrict the dataset to less than 20% sequence identity amongst the proteins, the holdout accuracy is achieved at 85.8%. Furthermore, seven DNA-BPs with unbounded structures are all correctly predicted. The current performances are better than results published previously. The higher accuracy value achieved here originates from two factors: the ability of the SVM to handle features that demonstrate a wide range of discriminatory power and, a different definition of the positive patch. Since our protocol does not lean on sequence or structural homology, it can be used to identify or predict proteins with DNA-binding function(s) regardless of their homology to the known ones
    • …
    corecore