26,890 research outputs found

    A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates

    Get PDF
    This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reducing the computational cost of the flux-free method while retaining the good quality of the bounds. The new methodology provides also a technique to compute equilibrated boundary tractions improving the quality of standard equilibration strategies. The zeroth-order equilibration conditions are imposed using an alternative less restrictive form of the first-order equilibration conditions, along with a new efficient minimization criterion. This new equilibration strategy provides much more accurate upper bounds for the energy and requires only doubling the dimension of the local linear systems of equations to be solved.Postprint (author's final draft

    Optimal solvers for PDE-Constrained Optimization

    Get PDF
    Optimization problems with constraints which require the solution of a partial differential equation arise widely in many areas of the sciences and engineering, in particular in problems of design. The solution of such PDE-constrained optimization problems is usually a major computational task. Here we consider simple problems of this type: distributed control problems in which the 2- and 3-dimensional Poisson problem is the PDE. The large dimensional linear systems which result from discretization and which need to be solved are of saddle-point type. We introduce two optimal preconditioners for these systems which lead to convergence of symmetric Krylov subspace iterative methods in a number of iterations which does not increase with the dimension of the discrete problem. These preconditioners are block structured and involve standard multigrid cycles. The optimality of the preconditioned iterative solver is proved theoretically and verified computationally in several test cases. The theoretical proof indicates that these approaches may have much broader applicability for other partial differential equations

    Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations

    Full text link
    Combining recent moment and sparse semidefinite programming (SDP) relaxation techniques, we propose an approach to find smooth approximations for solutions of problems involving nonlinear differential equations. Given a system of nonlinear differential equations, we apply a technique based on finite differences and sparse SDP relaxations for polynomial optimization problems (POP) to obtain a discrete approximation of its solution. In a second step we apply maximum entropy estimation (using moments of a Borel measure associated with the discrete solution) to obtain a smooth closed-form approximation. The approach is illustrated on a variety of linear and nonlinear ordinary differential equations (ODE), partial differential equations (PDE) and optimal control problems (OCP), and preliminary numerical results are reported

    On the Minimization of Convex Functionals of Probability Distributions Under Band Constraints

    Full text link
    The problem of minimizing convex functionals of probability distributions is solved under the assumption that the density of every distribution is bounded from above and below. A system of sufficient and necessary first-order optimality conditions as well as a bound on the optimality gap of feasible candidate solutions are derived. Based on these results, two numerical algorithms are proposed that iteratively solve the system of optimality conditions on a grid of discrete points. Both algorithms use a block coordinate descent strategy and terminate once the optimality gap falls below the desired tolerance. While the first algorithm is conceptually simpler and more efficient, it is not guaranteed to converge for objective functions that are not strictly convex. This shortcoming is overcome in the second algorithm, which uses an additional outer proximal iteration, and, which is proven to converge under mild assumptions. Two examples are given to demonstrate the theoretical usefulness of the optimality conditions as well as the high efficiency and accuracy of the proposed numerical algorithms.Comment: 13 pages, 5 figures, 2 tables, published in the IEEE Transactions on Signal Processing. In previous versions, the example in Section VI.B contained some mistakes and inaccuracies, which have been fixed in this versio

    A Decomposition Approach for a New Test-Scenario in Complex Problem Solving

    Get PDF
    Over the last years, psychological research has increasingly used computer-supported tests, especially in the analysis of complex human decision making and problem solving. The approach is to use computer-based test scenarios and to evaluate the performance of participants and correlate it to certain attributes, such as the participant's capacity to regulate emotions. However, two important questions can only be answered with the help of modern optimization methodology. The first one considers an analysis of the exact situations and decisions that led to a bad or good overall performance of test persons. The second important question concerns performance, as the choices made by humans can only be compared to one another, but not to the optimal solution, as it is unknown in general.\ud \ud Additionally, these test-scenarios have usually been defined on a trial-and-error basis, until certain characteristics became apparent. The more complex models become, the more likely it is that unforeseen and unwanted characteristics emerge in studies. To overcome this important problem, we propose to use mathematical optimization methodology not only as an analysis and training tool, but also in the design stage of the complex problem scenario.\ud \ud We present a novel test scenario, the IWR Tailorshop, with functional relations and model parameters that have been formulated based on optimization results. We also present a tailored decomposition approach to solve the resulting mixed-integer nonlinear programs with nonconvex relaxations and show some promising results of this approach
    • …
    corecore