73,779 research outputs found

    Solving First-Order Constraints in the Theory of the Evaluated Trees

    No full text
    International audienceWe describe in this paper a general algorithm for solving first-order constraints in the theory T of the evaluated trees which is a combination of the theory of finite or infinite trees and the theory of the rational numbers with addition, subtraction and a linear dense order relation. It transforms a first-order formula ϕ, which can possibly contain free variables, into a disjunction φ of solved formulas which is equivalent in T, without new free variables and such that φ is either true\mathit{true} or false\mathit{false} or a formula having at least one free variable and being equivalent neither to true\mathit{true} nor to false\mathit{false} in T

    Solving First-Order Constraints in the Theory of the Evaluated Trees

    Full text link

    Reduced Memory Footprint in Multiparametric Quadratic Programming by Exploiting Low Rank Structure

    Full text link
    In multiparametric programming an optimization problem which is dependent on a parameter vector is solved parametrically. In control, multiparametric quadratic programming (mp-QP) problems have become increasingly important since the optimization problem arising in Model Predictive Control (MPC) can be cast as an mp-QP problem, which is referred to as explicit MPC. One of the main limitations with mp-QP and explicit MPC is the amount of memory required to store the parametric solution and the critical regions. In this paper, a method for exploiting low rank structure in the parametric solution of an mp-QP problem in order to reduce the required memory is introduced. The method is based on ideas similar to what is done to exploit low rank modifications in generic QP solvers, but is here applied to mp-QP problems to save memory. The proposed method has been evaluated experimentally, and for some examples of relevant problems the relative memory reduction is an order of magnitude compared to storing the full parametric solution and critical regions

    Learning optimization models in the presence of unknown relations

    Full text link
    In a sequential auction with multiple bidding agents, it is highly challenging to determine the ordering of the items to sell in order to maximize the revenue due to the fact that the autonomy and private information of the agents heavily influence the outcome of the auction. The main contribution of this paper is two-fold. First, we demonstrate how to apply machine learning techniques to solve the optimal ordering problem in sequential auctions. We learn regression models from historical auctions, which are subsequently used to predict the expected value of orderings for new auctions. Given the learned models, we propose two types of optimization methods: a black-box best-first search approach, and a novel white-box approach that maps learned models to integer linear programs (ILP) which can then be solved by any ILP-solver. Although the studied auction design problem is hard, our proposed optimization methods obtain good orderings with high revenues. Our second main contribution is the insight that the internal structure of regression models can be efficiently evaluated inside an ILP solver for optimization purposes. To this end, we provide efficient encodings of regression trees and linear regression models as ILP constraints. This new way of using learned models for optimization is promising. As the experimental results show, it significantly outperforms the black-box best-first search in nearly all settings.Comment: 37 pages. Working pape

    Learning-Based Synthesis of Safety Controllers

    Full text link
    We propose a machine learning framework to synthesize reactive controllers for systems whose interactions with their adversarial environment are modeled by infinite-duration, two-player games over (potentially) infinite graphs. Our framework targets safety games with infinitely many vertices, but it is also applicable to safety games over finite graphs whose size is too prohibitive for conventional synthesis techniques. The learning takes place in a feedback loop between a teacher component, which can reason symbolically about the safety game, and a learning algorithm, which successively learns an overapproximation of the winning region from various kinds of examples provided by the teacher. We develop a novel decision tree learning algorithm for this setting and show that our algorithm is guaranteed to converge to a reactive safety controller if a suitable overapproximation of the winning region can be expressed as a decision tree. Finally, we empirically compare the performance of a prototype implementation to existing approaches, which are based on constraint solving and automata learning, respectively

    Evolutionary Computation in High Energy Physics

    Get PDF
    Evolutionary Computation is a branch of computer science with which, traditionally, High Energy Physics has fewer connections. Its methods were investigated in this field, mainly for data analysis tasks. These methods and studies are, however, less known in the high energy physics community and this motivated us to prepare this lecture. The lecture presents a general overview of the main types of algorithms based on Evolutionary Computation, as well as a review of their applications in High Energy Physics.Comment: Lecture presented at 2006 Inverted CERN School of Computing; to be published in the school proceedings (CERN Yellow Report
    • …
    corecore