151,035 research outputs found

    Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    Get PDF
    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center

    On the intersections of Fibonacci, Pell, and Lucas numbers

    Get PDF
    We describe how to compute the intersection of two Lucas sequences of the forms {Un(P,±1)}n=0∞\{U_n(P,\pm 1) \}_{n=0}^{\infty} or {Vn(P,±1)}n=0∞\{V_n(P,\pm 1) \}_{n=0}^{\infty} with P∈ZP\in\mathbb{Z} that includes sequences of Fibonacci, Pell, Lucas, and Lucas-Pell numbers. We prove that such an intersection is finite except for the case Un(1,−1)U_n(1,-1) and Un(3,1)U_n(3,1) and the case of two VV-sequences when the product of their discriminants is a perfect square. Moreover, the intersection in these cases also forms a Lucas sequence. Our approach relies on solving homogeneous quadratic Diophantine equations and Thue equations. In particular, we prove that 0, 1, 2, and 5 are the only numbers that are both Fibonacci and Pell, and list similar results for many other pairs of Lucas sequences. We further extend our results to Lucas sequences with arbitrary initial terms

    Numerical models of irrotational binary neutron stars in general relativity

    Get PDF
    We report on general relativistic calculations of quasiequilibrium configurations of binary neutron stars in circular orbits with zero vorticity. These configurations are expected to represent realistic situations as opposed to corotating configurations. The Einstein equations are solved under the assumption of a conformally flat spatial 3-metric (Wilson-Mathews approximation). The velocity field inside the stars is computed by solving an elliptical equation for the velocity scalar potential. Results are presented for sequences of constant baryon number (evolutionary sequences). Although the central density decreases much less with the binary separation than in the corotating case, it still decreases. Thus, no tendency is found for the stars to individually collapse to black hole prior to merger.Comment: Minor corrections, improved figure, 5 pages, REVTeX, Phys. Rev. Lett. in pres

    Relativistic Models for Binary Neutron Stars with Arbitrary Spins

    Full text link
    We introduce a new numerical scheme for solving the initial value problem for quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled Einstein field equations and equations of relativistic hydrodynamics are solved in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences of circular-orbit binaries of varying separation, keeping the rest mass and circulation constant along each sequence. Solutions are presented for configurations obeying an n=1 polytropic equation of state and spinning parallel and antiparallel to the orbital angular momentum. We treat stars with moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all but the highest circulation sequences, the spins of the neutron stars increase as the binary separation decreases. Our zero-circulation cases approximate irrotational sequences, for which the spin angular frequencies of the stars increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19) by the time the innermost circular orbit is reached. In addition to leaving an imprint on the inspiral gravitational waveform, this spin effect is measurable in the electromagnetic signal if one of the stars is a pulsar visible from Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some typos corrected. Accepted for publication in Phys. Rev.
    • …
    corecore