34,003 research outputs found

    A probabilistic interpretation of set-membership filtering: application to polynomial systems through polytopic bounding

    Get PDF
    Set-membership estimation is usually formulated in the context of set-valued calculus and no probabilistic calculations are necessary. In this paper, we show that set-membership estimation can be equivalently formulated in the probabilistic setting by employing sets of probability measures. Inference in set-membership estimation is thus carried out by computing expectations with respect to the updated set of probability measures P as in the probabilistic case. In particular, it is shown that inference can be performed by solving a particular semi-infinite linear programming problem, which is a special case of the truncated moment problem in which only the zero-th order moment is known (i.e., the support). By writing the dual of the above semi-infinite linear programming problem, it is shown that, if the nonlinearities in the measurement and process equations are polynomial and if the bounding sets for initial state, process and measurement noises are described by polynomial inequalities, then an approximation of this semi-infinite linear programming problem can efficiently be obtained by using the theory of sum-of-squares polynomial optimization. We then derive a smart greedy procedure to compute a polytopic outer-approximation of the true membership-set, by computing the minimum-volume polytope that outer-bounds the set that includes all the means computed with respect to P

    Jamming transitions and avalanches in the game of Dots-and-Boxes

    Full text link
    We study the game of Dots-and-Boxes from a statistical point of view. The early game can be treated as a case of Random Sequential Adsorption, with a jamming transition that marks the beginning of the end-game. We derive set of differential equations to make predictions about the state of the lattice at the transition, and thus about the distribution of avalanches in the end-game.Comment: 7 pages, 8 figures, revtex

    Afivo: a framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods

    Get PDF
    Afivo is a framework for simulations with adaptive mesh refinement (AMR) on quadtree (2D) and octree (3D) grids. The framework comes with a geometric multigrid solver, shared-memory (OpenMP) parallelism and it supports output in Silo and VTK file formats. Afivo can be used to efficiently simulate AMR problems with up to about 10810^{8} unknowns on desktops, workstations or single compute nodes. For larger problems, existing distributed-memory frameworks are better suited. The framework has no built-in functionality for specific physics applications, so users have to implement their own numerical methods. The included multigrid solver can be used to efficiently solve elliptic partial differential equations such as Poisson's equation. Afivo's design was kept simple, which in combination with the shared-memory parallelism facilitates modification and experimentation with AMR algorithms. The framework was already used to perform 3D simulations of streamer discharges, which required tens of millions of cells

    Quantum Entanglement in Nanocavity Arrays

    Get PDF
    We show theoretically how quantum interference between linearly coupled modes with weak local nonlinearity allows the generation of continuous variable entanglement. By solving the quantum master equation for the density matrix, we show how the entanglement survives realistic levels of pure dephasing. The generation mechanism forms a new paradigm for entanglement generation in arrays of coupled quantum modes.Comment: 5 pages, 3 figure

    Quantum Algorithm to Solve Satisfiability Problems

    Full text link
    A new quantum algorithm is proposed to solve Satisfiability(SAT) problems by taking advantage of non-unitary transformation in ground state quantum computer. The energy gap scale of the ground state quantum computer is analyzed for 3-bit Exact Cover problems. The time cost of this algorithm on general SAT problems is discussed.Comment: 5 pages, 3 figure
    • …
    corecore