169 research outputs found

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs

    Robustness, stability, recoverability, and reliability in constraint satisfaction problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-014-0778-3Many real-world problems in Artificial Intelligence (AI) as well as in other areas of computer science and engineering can be efficiently modeled and solved using constraint programming techniques. In many real-world scenarios the problem is partially known, imprecise and dynamic such that some effects of actions are undesired and/or several un-foreseen incidences or changes can occur. Whereas expressivity, efficiency and optimality have been the typical goals in the area, there are several issues regarding robustness that have a clear relevance in dynamic Constraint Satisfaction Problems (CSP). However, there is still no clear and common definition of robustness-related concepts in CSPs. In this paper, we propose two clearly differentiated definitions for robustness and stability in CSP solutions. We also introduce the concepts of recoverability and reliability, which arise in temporal CSPs. All these definitions are based on related well-known concepts, which are addressed in engineering and other related areas.This work has been partially supported by the research project TIN2013-46511-C2-1 (MINECO, Spain). We would also thank the reviewers for their efforts and helpful comments.Barber Sanchís, F.; Salido Gregorio, MA. (2015). Robustness, stability, recoverability, and reliability in constraint satisfaction problems. Knowledge and Information Systems. 44(3):719-734. https://doi.org/10.1007/s10115-014-0778-3S719734443Abril M, Barber F, Ingolotti L, Salido MA, Tormos P, Lova A (2008) An assessment of railway capacity. Transp Res Part E 44(5):774–806Barber F (2000) Reasoning on intervals and point-based disjunctive metric constraints in temporal contexts. J Artif Intell Res 12:35–86Bartak R, Salido MA (2011) Constraint satisfaction for planning and scheduling problems. Constraints 16(3):223–227Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53Climent L, Wallace R, Salido M, Barber F (2013) Modeling robustness in CSPS as weighted CSPS. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems CPAIOR 2013, pp 44–60Climent L, Wallace R, Salido M, Barber F (2014) Robustness and stability in constraint programming under dynamism and uncertainty. J Artif Intell Res 49(1):49–78Dechter R (1991) Temporal constraint network. Artif Intell 49:61–295Hazewinkel M (2002) Encyclopaedia of mathematics. Springer, New YorkHebrard E (2007) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South WalesHebrard E, Hnich B, Walsh T (2004) Super solutions in constraint programming. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR-04), pp 157–172Jen E (2003) Stable or robust? What’s the difference? Complexity 8(3):12–18Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(137)Liebchen C, Lbbecke M, Mhring R, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: LNCS, vol 5868Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009) Mining frequent arrangements of temporal intervals. Knowl Inf Syst 21:133–171Rizk A, Batt G, Fages F, Solima S (2009) A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12):168–179Rossi F, van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier, New YorkRoy B (2010) Robustness in operational research and decision aiding: a multi-faceted issue. Eur J Oper Res 200:629–638Szathmary E (2006) A robust approach. Nature 439:19–20Verfaillie G, Schiex T (1994) Solution reuse in dynamic constraint satisfaction problems. In: Proceedings of the 12th national conference on artificial intelligence (AAAI-94), pp 307–312Wallace R, Grimes D, Freuder E (2009) Solving dynamic constraint satisfaction problems by identifying stable features. In: Proceedings of international joint conferences on artificial intelligence (IJCAI-09), pp 621–627Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New YorkZhou Y, Croft W (2008) Measuring ranked list robustness for query performance prediction. Knowl Inf Syst 16:155–17

    Additive versus multiplicative clause weighting for SAT

    Get PDF
    This paper examines the relative performance of additive and multiplicative clause weighting schemes for propositional satisfiability testing. Starting with one of the most recently developed multiplicative algorithms (SAPS), an experimental study was constructed to isolate the effects of multiplicative in comparison to additive weighting, while controlling other key features of the two approaches, namely the use of random versus flat moves, deterministic versus probabilistic weight smoothing and multiple versus single inclusion of literals in the local search neighborhood. As a result of this investigation we developed a pure additive weighting scheme (PAWS) which can outperform multiplicative weighting on a range of difficult problems, while requiring considerably less effort in terms of parameter tuning. W

    Robustness, Stability, Recoverability and Reliability in CSP

    Full text link
    Technical ReportMany real-world problems in Artificial Intelligence (AI) as well as in other areas of computer science and engineering can be efficiently modeled and solved using constraint programming techniques. In many real-world scenarios the problem is partially known, imprecise, and dynamic such that some effects of actions are undesired and/or several un-foreseen incidences or changes can occur. Whereas expressivity, efficiency, and optimality have been the typical goals in the area, there are several issues regarding robustness that have a clear relevance in dynamic Constraint Satisfaction Problems (CSP). However, there is still no clear and common definition of robustness-related concepts in CSPs. In this paper, we propose two clearly differentiated definitions for robustness and stability in CSP solutions. We also introduce the concepts of recoverability and reliability, which arise in temporal CSPs. All these definitions are based on related well-known concepts, that are addressed in engineering and other related areas.Barber Sanchís, F.; Salido Gregorio, MA. (2013). Robustness, Stability, Recoverability and Reliability in CSP. http://hdl.handle.net/10251/2891

    Metareasoning about propagators for constraint satisfaction

    Get PDF
    Given the breadth of constraint satisfaction problems (CSPs) and the wide variety of CSP solvers, it is often very difficult to determine a priori which solving method is best suited to a problem. This work explores the use of machine learning to predict which solving method will be most effective for a given problem. We use four different problem sets to determine the CSP attributes that can be used to determine which solving method should be applied. After choosing an appropriate set of attributes, we determine how well j48 decision trees can predict which solving method to apply. Furthermore, we take a cost sensitive approach such that problem instances where there is a great difference in runtime between algorithms are emphasized. We also attempt to use information gained on one class of problems to inform decisions about a second class of problems. Finally, we show that the additional costs of deciding which method to apply are outweighed by the time savings compared to applying the same solving method to all problem instances

    The Biased Homogeneous r-Lin Problem

    Get PDF

    Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs

    Get PDF
    The seminal result that every language having an interactive proof also has a zero-knowledge interactive proof assumes the existence of one-way functions. Ostrovsky and Wigderson (ISTCS 1993) proved that this assumption is necessary: if one-way functions do not exist, then only languages in BPP have zero-knowledge interactive proofs. Ben-Or et al. (STOC 1988) proved that, nevertheless, every language having a multi-prover interactive proof also has a zero-knowledge multi-prover interactive proof, unconditionally. Their work led to, among many other things, a line of work studying zero knowledge without intractability assumptions. In this line of work, Kilian, Petrank, and Tardos (STOC 1997) defined and constructed zero-knowledge probabilistically checkable proofs (PCPs). While PCPs with quasilinear-size proof length, but without zero knowledge, are known, no such result is known for zero knowledge PCPs. In this work, we show how to construct ``2-round\u27\u27 PCPs that are zero knowledge and of length \tilde{O}(K) where K is the number of queries made by a malicious polynomial time verifier. Previous solutions required PCPs of length at least K^6 to maintain zero knowledge. In this model, which we call *duplex PCP* (DPCP), the verifier first receives an oracle string from the prover, then replies with a message, and then receives another oracle string from the prover; a malicious verifier can make up to K queries in total to both oracles. Deviating from previous works, our constructions do not invoke the PCP Theorem as a blackbox but instead rely on certain algebraic properties of a specific family of PCPs. We show that if the PCP has a certain linear algebraic structure --- which many central constructions can be shown to possess, including [BFLS91,ALMSS98,BS08] --- we can add the zero knowledge property at virtually no cost (up to additive lower order terms) while introducing only minor modifications in the algorithms of the prover and verifier. We believe that our linear-algebraic characterization of PCPs may be of independent interest, as it gives a simplified way to view previous well-studied PCP constructions

    Imperfect Gaps in Gap-ETH and PCPs

    Get PDF
    We study the role of perfect completeness in probabilistically checkable proof systems (PCPs) and give a way to transform a PCP with imperfect completeness to one with perfect completeness, when the initial gap is a constant. We show that PCP_{c,s}[r,q] subseteq PCP_{1,s\u27}[r+O(1),q+O(r)] for c-s=Omega(1) which in turn implies that one can convert imperfect completeness to perfect in linear-sized PCPs for NP with a O(log n) additive loss in the query complexity q. We show our result by constructing a "robust circuit" using threshold gates. These results are a gap amplification procedure for PCPs, (when completeness is not 1) analogous to questions studied in parallel repetition [Anup Rao, 2011] and pseudorandomness [David Gillman, 1998] and might be of independent interest. We also investigate the time-complexity of approximating perfectly satisfiable instances of 3SAT versus those with imperfect completeness. We show that the Gap-ETH conjecture without perfect completeness is equivalent to Gap-ETH with perfect completeness, i.e. MAX 3SAT(1-epsilon,1-delta), delta > epsilon has 2^{o(n)} algorithms if and only if MAX 3SAT(1,1-delta) has 2^{o(n)} algorithms. We also relate the time complexities of these two problems in a more fine-grained way to show that T_2(n) <= T_1(n(log log n)^{O(1)}), where T_1(n),T_2(n) denote the randomized time-complexity of approximating MAX 3SAT with perfect and imperfect completeness respectively

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developements are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, quantum mechanics, representation theory, and the theory of error-correcting codes
    corecore