1,594 research outputs found

    Periodic Orbit Theory and Spectral Statistics for Quantum Graphs

    Full text link
    We quantize graphs (networks) which consist of a finite number of bonds and vertices. We show that the spectral statistics of fully connected graphs is well reproduced by random matrix theory. We also define a classical phase space for the graphs, where the dynamics is mixing and the periodic orbits proliferate exponentially. An exact trace formula for the quantum spectrum is developed in terms of the same periodic orbits, and it is used to investigate the origin of the connection between random matrix theory and the underlying chaotic classical dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the fore-front of the research in Quantum Chaos and related fields.Comment: 37 pages, 20 figures, other comments, accepted for publication in the Annals of Physic

    Fine Boundary Properties in Complex Analysis and Discrete Potential Theory

    Get PDF
    In this thesis we study some fine properties of sets in the boundary of continuous and discrete metric spaces. On the discrete side, we consider a Potential Theory on infinite trees. Using probabilistic methods, we derive a description of the set of irregular points for the Dirichlet problem on the tree. In particular, we obtain a Wiener’s type test and we show that the set of irregular points has zero capacity. We also discuss some uniqueness results for the solution of the Dirichlet problem in some energy spaces. Then, we provide an equilibrium equation characterizing measures that realize a p−capacity on the natural boundary of the tree and we discuss a quite surprising application to the classical problem of tiling a rectangle with squares. In the continuous setting, we study metric distortion properties of sets in unit circle under the action of inner functions. Classical results by Löwner and by Fernández-Pestana describe this distortion in terms of Lebesgue measure and Hausdorff content respectively, for inner functions having the Denjoy-Wolff point in the unit disc. We present an extended theorem of the same kind which applies also to inner functions with no fixed points in the unit disc. In this situation, the distortion properties are given in terms of a natural (infinite) measure which provides at the same time information on the size and on the distribution of a set around the Denjoy-Wolff point. As an application of our result we derive an estimate of the size of the omitted values of an inner functions in terms of the size of points in the unit circle not admitting a finite angular derivative. Using our result we are also able to prove a version of Löwner and Fernández-Pestana theorems for inner functions of the upper half plane fixing the point at infinity

    The inverse problem on finite networks

    Get PDF
    The aim of this thesis is to contribute to the field of discrete boundary value problems on finite networks. Boundary value problems have been considered both on the continuum and on the discrete fields. Despite working in the discrete field, we use the notations of the continuous field for elliptic operators and boundary value problems. The reason is the importance of the symbiosis between both fields, since sometimes solving a problem in the discrete setting can lead to the solution of its continuum version by a limit process. However, the relation between the discrete and the continuous settings does not work out so easily in general. Although the discrete field has softness and regular conditions on all its manifolds, functions and operators in a natural way, some difficulties that are avoided by the continuous field appear. Specifically, this thesis endeavors two objectives. First, we wish to deduce functional, structural or resistive data of a network taking advantage of its conductivity information. The actual goal is to gather functional, structural and resistive information of a large network when the same specifics of the subnetworks that form it are known. The reason is that large networks are difficult to work with because of their size. The smaller the size of a network, the easier to work with it, and hence we try to break the networks into smaller parts that may allow us to solve easier problems on them. We seek the expressions of certain operators that characterize the solutions of boundary value problems on the original networks. These problems are denominated direct boundary value problems, on account of the direct employment of the conductivity information. The second purpose is to recover the internal conductivity of a network using only boundary measurements and global equilibrium conditions. For this problem is poorly arranged because it is highly sensitive to changes in the boundary data, at times we only target a partial reconstruction of the conductivity data or we introduce additional conditions to the network in order to be able to perform a full internal reconstruction. This variety of problems is labelled as inverse boundary value problems, in light of the profit of boundary information to gain knowledge about the inside of the network. Our work tries to find situations where the recovery is feasible, partially or totally. One of our ambitions regarding inverse boundary value problems is to recuperate the structure of the networks that allow the well-known Serrin's problem to have a solution in the discrete setting. Surprisingly, the answer is similar to the continuous case. We also aim to achieve a network characterization from a boundary operator on the network. With this end we define a new class of boundary value problems, that we call overdetermined partial boundary value problems. We describe how the solutions of this family of problems that hold an alternating property on a part of the boundary spread through the network preserving this alternance. If we focus in a family of networks, we see that the above mentioned operator on the boundary can be the response matrix of an infinite family of networks associated to different conductivity functions. By choosing an specific extension, we get a unique network whose response matrix is equal to a previously given matrix. Once we have characterized those matrices that are the response matrices of certain networks, we try to recover the conductances of these networks. With this end, we characterize any solution of an overdetermined partial boundary value problem and describe its resolvent kernels. Then, we analyze two big groups of networks owning remarkable boundary properties which yield to the recovery of the conductances of certain edges near the boundary. We aim to give explicit formulae for the acquirement of these conductances. Using these formulae we are allowed to execute a full conductivity recovery under certain circumstances.Aquesta tesi té dos objectius generals. Primer, volem deduir dades funcionals, estructurals o resistives d'una xarxa fent servir la informació proporcionada per la seva conductivitat. L'objectiu real és aconseguir aquesta informació d'una xarxa gran quan coneixem la mateixa de les subxarxes que la formen. El motiu és que les xarxes grans no són fàcils de treballar a causa de la seva mida. Com més petita sigui una xarxa, més fàcil serà treballar-hi, i per tant intentem trencar les xarxes grans en parts més petites que potser ens permeten resoldre problemes sobre elles més fàcilment. Principalment busquem les expressions de certs operadors que caracteritzen les solucions dels problemes de contorn en les xaxes originals. Aquests problemes es diuen problemes directes, ja que s'empren directament les dades de conductivitat per obtenir informació. El segon objectiu és recuperar les dades de conductivitat a l'interior d'una xarxa emprant només mesures a la frontera de la mateixa i condicions d'equiliri globals. Com que aquest problema no està ben establert perquè és altament sensible als canvis en les dades de frontera, de vegades només busquem una reconstrucció partial de la conductivitat o afegim condicions a la xarxa per tal de recuperar completament la conductivitat. Aquest tipus de problemes es diuen problemes inversos, ja que es fa servir informació a la frontera per aconseguir coneixements de l'interior de la xarxa. Aquest treball tracta de trobar situacions on la recuperació, total o parcial, es pugui dur a terme. Una de les nostres ambicions quant a problemes inversos és recuperar l'estructura de les xarxes per les que el ben conegut Problema de Serrin té solució en el camp discret. Sorprenentment, la resposta és similar al cas continu. També volem caracteritzar les xarxes mitjançant un operador a la frontera. Amb aquesta finalitat definim els problemes de contorn parcials sobredeterminats i describim com les solucions d'aquesta família de problemes que tenen una propietat d'alternància a una part de la frontera es propaguen a través de la xarxa mantenint aquesta alternància. Si ens centrem en una certa família de xarxes, veiem que l'operador a la frontera que abans hem mencionat pot ser la matriu de respostes d'una família infinita de xarxes amb diferentes conductivitats. Escollint una extensió en concret, obtenim una única xarxa per la qual una matriu donada és la seva matriu de respostes. Un cop hem caracteritzat aquelles matrius que són la matriu de respostes de certes xarxes, intentem recuperar les conductàncies d'aquestes xarxes. Amb aquesta finalitat, caracteritzem qualsevol solució d'un problema de contorn parcial sobredeterminat. Després, analitzem dos gran grups de xarxes que tene propietats de frontera notables i que ens porten a la recuperació de les conductàncies de certes branques a prop de la frontera. L'objectiu és donar fórmules explícites per obtenir aquestes conductàncies. Fent servir aquestes fórmules, aconseguim dur a terme una recuperació completa de conductàncies sota certes circumstànciesPostprint (published version

    A formula for the Kirchhoff index

    Get PDF
    We show here that the Kirchhoff index of a network is the average of the Wiener capacities of its vertices. Moreover, we obtain a closed-form formula for the effective resistance between any pair of vertices when the considered network has some symmetries which allows us to give the corresponding formulas for the Kirchhoff index. In addition, we find the expression for the Foster's n-th Formula

    Dirichlet Form Theory and its Applications

    Get PDF
    Theory of Dirichlet forms is one of the main achievements in modern probability theory. It provides a powerful connection between probabilistic and analytic potential theory. It is also an effective machinery for studying various stochastic models, especially those with non-smooth data, on fractal-like spaces or spaces of infinite dimensions. The Dirichlet form theory has numerous interactions with other areas of mathematics and sciences. This workshop brought together top experts in Dirichlet form theory and related fields as well as promising young researchers, with the common theme of developing new foundational methods and their applications to specific areas of probability. It provided a unique opportunity for the interaction between the established scholars and young researchers

    A survey of random processes with reinforcement

    Full text link
    The models surveyed include generalized P\'{o}lya urns, reinforced random walks, interacting urn models, and continuous reinforced processes. Emphasis is on methods and results, with sketches provided of some proofs. Applications are discussed in statistics, biology, economics and a number of other areas.Comment: Published at http://dx.doi.org/10.1214/07-PS094 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore