480 research outputs found

    Algorithms for DC Programming via Polyhedral Approximations of Convex Functions

    Full text link
    There is an existing exact algorithm that solves DC programming problems if one component of the DC function is polyhedral convex (Loehne, Wagner, 2017). Motivated by this, first, we consider two cutting-plane algorithms for generating an ϵ\epsilon-polyhedral underestimator of a convex function g. The algorithms start with a polyhedral underestimator of g and the epigraph of the current underestimator is intersected with either a single halfspace (Algorithm 1) or with possibly multiple halfspaces (Algorithm 2) in each iteration to obtain a better approximation. We prove the correctness and finiteness of both algorithms, establish the convergence rate of Algorithm 1, and show that after obtaining an ϵ\epsilon-polyhedral underestimator of the first component of a DC function, the algorithm from (Loehne, Wagner, 2017) can be applied to compute an ϵ\epsilon solution of the DC programming problem without further computational effort. We then propose an algorithm (Algorithm 3) for solving DC programming problems by iteratively generating a (not necessarily ϵ\epsilon-) polyhedral underestimator of g. We prove that Algorithm 3 stops after finitely many iterations and it returns an ϵ\epsilon-solution to the DC programming problem. Moreover, the sequence {xk}k0outputtedbyAlgorithm3convergestoaglobalminimizeroftheDCproblemwhen\{x_k\}_{k\geq 0} outputted by Algorithm 3 converges to a global minimizer of the DC problem when \epsilon$ is set to zero. Computational results based on some test instances from the literature are provided

    Locating a semi-obnoxious facility in the special case of Manhattan distances

    Get PDF
    The aim of thiswork is to locate a semi-obnoxious facility, i.e. tominimize the distances to a given set of customers in order to save transportation costs on the one hand and to avoid undesirable interactions with other facilities within the region by maximizing the distances to the corresponding facilities on the other hand. Hence, the goal is to satisfy economic and environmental issues simultaneously. Due to the contradicting character of these goals, we obtain a non-convex objective function. We assume that distances can be measured by rectilinear distances and exploit the structure of this norm to obtain a very efficient dual pair of algorithms

    Decomposition methods for mixed-integer nonlinear programming

    Get PDF
    En esta tesis se pueden distinguir dos líneas principales de investigación. La primera se ocupa de los métodos de Aproximación Externa (Outer Approximation), mientras que la segunda estudia un solución basada en el método de Generación de Columnas (Column Generation). En esta tesis investigamos y analizamos aspectos teóricos y prácticos de ambas ideas dentro del marco de la descomposición. El objetivo principal de este estudio es desarrollar métodos sistemáticos basados en la descomposición para resolver problemas de gran escala utilizando los métodos de Aproximación Externa y Generación de Columnas. En el capítulo 1 se introduce un concepto importante necesario para la descomposición. Este concepto consiste en una reformulación separable en bloques del problema de programación no lineal de enteros mixtos. En el capítulo 1 también se hace una descripción de los métodos mencionados anteriormente, incluyendo los de Ramificación y Acotación, además de otros conceptos clave que son necesarios para esta tesis, como por ejemplo los de Aproximación Interior, etc. Los capítulos 2, 3 y 4 investigan el uso del concepto de Aproximación Externa. Específicamente, en el capítulo 2 se presenta un algoritmo de Aproximación Externa basado en descomposición para resolver problemas de programación no-lineales convexos enteros-mixtos, basados en la construcción de hiperplanos soporte para un conjunto factible. El capítulo 3 amplia el marco de aplicación de un algoritmo de Aproximación Externa basado en descomposición, a problemas de programación no lineales no convexos enteros mixtos, introduciendo una Aproximación Externa convexa por partes de un conjunto factible no convexo. Otra perspectiva de la definición de Aproximación Externa para problemas no convexos se considera en el capítulo 4, que presenta un algoritmo de Refinamiento Interno y Externo basado en descomposición, que construye una Aproximación Externa al mismo tiempo que calcula la Aproximación Interna usando Generación de Columnas. La Aproximación Externa usada en el algoritmo de Refinamiento Interno y Externo se basa en la visión multiobjetivo de la denominada versión recursos restringidos del problema original. Dos capítulos están dedicados a la Generación de Columnas. En el capítulo 4 se presenta un algoritmo de Generación de Columnas para calcular una Aproximación Interna del problema original. Además se describe un algoritmo heurístico basado en particiones que usa un refinamiento de la Aproximación Interna. El capítulo 5 analiza varias técnicas de aceleración para la Generación de Columnas, donde se describe un algoritmo heurístico general basado en la Generación de Columnas, que puede generar varias soluciones candidatas de alta calidad. El capítulo 6 contiene una breve descripción de la implementación en Python de DECOGO (software de programación no lineal de enteros mixtos).La programación no lineal de enteros mixtos es un campo de optimización importante y desafiante. Este tipo de problemas pueden contener variables continuas e enteras, así como restricciones lineales y no lineales. Esta clase de problemas tiene un papel fundamental en la ciencia y la industria, ya que proporcionan una forma precisa de describir fenómenos en diferentes áreas como ingeniería química y mecánica, cadena de suministro, gestión, etc. La mayoría de los algoritmos de última generación para resolver los problemas de programación no lineal de enteros mixtos no convexos están basados en los métodos de ramificación y acotación. El principal inconveniente de este enfoque es que el árbol de búsqueda puede crecer muy rápido impidiendo que el algoritmo encuentre una solución de alta calidad en un tiempo razonable. Una posible alternativa que evite la generación de grandes árboles consiste en hacer uso del concepto de descomposición para hacer que el procedimiento sea más manejable. La descomposición proporciona un marco general en el que el problema original se divide en pequeños subproblemas y sus resultados se combinan en un problema maestro más sencillo. Esta tesis analiza los métodos de descomposición para la programación no lineal de enteros mixtos. El principal objetivo de esta tesis es desarrollar métodos alternativos al de ramificación y acotación, basados en el concepto de descomposición. Para la industria y la ciencia, es importante calcular una solución óptima, o al menos, mejorar la mejor solución disponible hasta ahora. Además, esto debe hacerse en un plazo de tiempo razonable. Por lo tanto, el objetivo de esta tesis es diseñar algoritmos eficientes que permitan resolver problemas de gran escala que tienen una aplicación práctica directa. En particular, nos centraremos en modelos que pueden ser aplicados en la planificación y operación de sistemas energéticos

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Analytical cost metrics: days of future past

    Get PDF
    2019 Summer.Includes bibliographical references.Future exascale high-performance computing (HPC) systems are expected to be increasingly heterogeneous, consisting of several multi-core CPUs and a large number of accelerators, special-purpose hardware that will increase the computing power of the system in a very energy-efficient way. Specialized, energy-efficient accelerators are also an important component in many diverse systems beyond HPC: gaming machines, general purpose workstations, tablets, phones and other media devices. With Moore's law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. This work builds analytical cost models for cost metrics such as time, energy, memory access, and silicon area. These models are used to predict the performance of applications, for performance tuning, and chip design. The idea is to work with domain specific accelerators where analytical cost models can be accurately used for performance optimization. The performance optimization problems are formulated as mathematical optimization problems. This work explores the analytical cost modeling and mathematical optimization approach in a few ways. For stencil applications and GPU architectures, the analytical cost models are developed for execution time as well as energy. The models are used for performance tuning over existing architectures, and are coupled with silicon area models of GPU architectures to generate highly efficient architecture configurations. For matrix chain products, analytical closed form solutions for off-chip data movement are built and used to minimize the total data movement cost of a minimum op count tree

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore