6,782 research outputs found

    Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives

    Full text link
    Particle Swarm Optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms. The canonical particle swarm optimizer is based on the flocking behavior and social co-operation of birds and fish schools and draws heavily from the evolutionary behavior of these organisms. This paper serves to provide a thorough survey of the PSO algorithm with special emphasis on the development, deployment and improvements of its most basic as well as some of the state-of-the-art implementations. Concepts and directions on choosing the inertia weight, constriction factor, cognition and social weights and perspectives on convergence, parallelization, elitism, niching and discrete optimization as well as neighborhood topologies are outlined. Hybridization attempts with other evolutionary and swarm paradigms in selected applications are covered and an up-to-date review is put forward for the interested reader.Comment: 34 pages, 7 table

    A Logic-Based Mixed-Integer Nonlinear Programming Model to Solve Non-Convex and Non-Smooth Economic Dispatch Problems: An Accuracy Analysis

    Full text link
    This paper presents a solver-friendly logic-based mixed-integer nonlinear programming model (LB-MINLP) to solve economic dispatch (ED) problems considering disjoint operating zones and valve-point effects. A simultaneous consideration of transmission losses and logical constraints in ED problems causes difficulties either in the linearization procedure, or in handling via heuristic-based approaches, and this may result in outcome violation. The non-smooth terms can make the situation even worse. On the other hand, non-convex nonlinear models with logical constraints are not solvable using the existing nonlinear commercial solvers. In order to explain and remedy these shortcomings, we proposed a novel recasting strategy to overcome the hurdle of solving such complicated problems with the aid of the existing nonlinear solvers. The proposed model can facilitate the pre-solving and probing techniques of the commercial solvers by recasting the logical constraints into the mixed-integer terms of the objective function. It consequently results in a higher accuracy of the model and better computational efficiency. The acquired results demonstrated that the LB-MINLP model, compared to the existing (heuristic-based and solver-based) models in the literature, can easily handle the non-smooth and nonlinear terms and achieve an optimal solution much faster and without any outcome violation

    A novel metaheuristic method for solving constrained engineering optimization problems: Drone Squadron Optimization

    Full text link
    Several constrained optimization problems have been adequately solved over the years thanks to advances in the metaheuristics area. In this paper, we evaluate a novel self-adaptive and auto-constructive metaheuristic called Drone Squadron Optimization (DSO) in solving constrained engineering design problems. This paper evaluates DSO with death penalty on three widely tested engineering design problems. Results show that the proposed approach is competitive with some very popular metaheuristics.Comment: 3 page

    Improvement of PSO algorithm by memory based gradient search - application in inventory management

    Full text link
    Advanced inventory management in complex supply chains requires effective and robust nonlinear optimization due to the stochastic nature of supply and demand variations. Application of estimated gradients can boost up the convergence of Particle Swarm Optimization (PSO) algorithm but classical gradient calculation cannot be applied to stochastic and uncertain systems. In these situations Monte-Carlo (MC) simulation can be applied to determine the gradient. We developed a memory based algorithm where instead of generating and evaluating new simulated samples the stored and shared former function evaluations of the particles are sampled to estimate the gradients by local weighted least squares regression. The performance of the resulted regional gradient-based PSO is verified by several benchmark problems and in a complex application example where optimal reorder points of a supply chain are determined.Comment: book chapter, 20 pages, 7 figures, 2 table

    A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems

    No full text
    This study presents a new approach based on a hybrid algorithm consisting of Genetic Algorithm (GA), Pattern Search (PS) and Sequential Quadratic Programming (SQP) techniques to solve the well-known power system Economic dispatch problem (ED). GA is the main optimizer of the algorithm, whereas PS and SQP are used to fine tune the results of GA to increase confidence in the solution. For illustrative purposes, the algorithm has been applied to various test systems to assess its effectiveness. Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results reported in literature. The outcome is very encouraging and suggests that the hybrid GA–PS–SQP algorithm is very efficient in solving power system economic dispatch problem

    Diversity Enhancement for Micro-Differential Evolution

    Full text link
    The differential evolution (DE) algorithm suffers from high computational time due to slow nature of evaluation. In contrast, micro-DE (MDE) algorithms employ a very small population size, which can converge faster to a reasonable solution. However, these algorithms are vulnerable to a premature convergence as well as to high risk of stagnation. In this paper, MDE algorithm with vectorized random mutation factor (MDEVM) is proposed, which utilizes the small size population benefit while empowers the exploration ability of mutation factor through randomizing it in the decision variable level. The idea is supported by analyzing mutation factor using Monte-Carlo based simulations. To facilitate the usage of MDE algorithms with very-small population sizes, new mutation schemes for population sizes less than four are also proposed. Furthermore, comprehensive comparative simulations and analysis on performance of the MDE algorithms over various mutation schemes, population sizes, problem types (i.e. uni-modal, multi-modal, and composite), problem dimensionalities, and mutation factor ranges are conducted by considering population diversity analysis for stagnation and trapping in local optimum situations. The studies are conducted on 28 benchmark functions provided for the IEEE CEC-2013 competition. Experimental results demonstrate high performance and convergence speed of the proposed MDEVM algorithm.Comment: Developed version is submitted for review to Applied soft computin

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version

    A Social Spider Algorithm for Solving the Non-convex Economic Load Dispatch Problem

    Full text link
    Economic Load Dispatch (ELD) is one of the essential components in power system control and operation. Although conventional ELD formulation can be solved using mathematical programming techniques, modern power system introduces new models of the power units which are non-convex, non-differentiable, and sometimes non-continuous. In order to solve such non-convex ELD problems, in this paper we propose a new approach based on the Social Spider Algorithm (SSA). The classical SSA is modified and enhanced to adapt to the unique characteristics of ELD problems, e.g., valve-point effects, multi-fuel operations, prohibited operating zones, and line losses. To demonstrate the superiority of our proposed approach, five widely-adopted test systems are employed and the simulation results are compared with the state-of-the-art algorithms. In addition, the parameter sensitivity is illustrated by a series of simulations. The simulation results show that SSA can solve ELD problems effectively and efficiently

    Fish School Search Algorithm for Constrained Optimization

    Full text link
    In this work we investigate the effectiveness of the application of niching able swarm metaheuristic approaches in order to solve constrained optimization problems. Sub-swarms are used in order to allow the achievement of many feasible regions to be exploited in terms of fitness function. The niching approach employed was wFSS, a version of the Fish School Search algorithm devised specifically to deal with multi-modal search spaces. A base technique referred as wrFSS was conceived and three variations applying different constraint handling procedures were also proposed. Tests were performed in seven problems from CEC 2010 and a comparison with other approaches was carried out. Results show that the search strategy proposed is able to handle some heavily constrained problems and achieve results comparable to the state-of-the-art algorithms. However, we also observed that the local search operator present in wFSS and inherited by wrFSS makes the fitness convergence difficult when the feasible region presents some specific geometrical features

    PSO and CPSO Based Interference Alignment for K-User MIMO Interference Channel

    Full text link
    This paper investigates how to use a metaheuristic based technique, namely Particle Swarm Optimization (PSO), in carrying out of Interference Alignment (IA) for KK-User MIMO Interference Channel (IC). Despite its increasing popularity, mainly in wireless communications, IA lacks of explicit and straightforward design procedures. Indeed, IA design results in complex optimization tasks involving a large amount of decision variables, together with a problem of convergence of the IA solutions. In this paper the IA optimization is performed using PSO and Cooperative PSO (CPSO) more suitable for large scale optimization, a comparison between the two versions is also carried out. This approach seems to be promising.Comment: 9 pages, 3 figures. arXiv admin note: text overlap with arXiv:1710.0086
    • …
    corecore