75,502 research outputs found

    Distributed bounded-error state estimation for partitioned systems based on practical robust positive invariance

    Full text link
    We propose a partition-based state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that exploits suitable pieces of information from parent subsystems. Moreover, differently from methods based on moving horizon estimation, our approach does not require the on-line solution to optimization problems. Our state-estimation scheme, that is based on the notion of practical robust positive invariance developed in Rakovic 2011, also guarantees satisfaction of constraints on local estimation errors and it can be updated with a limited computational effort when subsystems are added or removed

    Plug-and-Play Model Predictive Control based on robust control invariant sets

    Get PDF
    In this paper we consider a linear system represented by a coupling graph between subsystems and propose a distributed control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. Most importantly, as in Riverso et al., 2012 our design procedure enables plug-and-play (PnP) operations, meaning that (i) the addition or removal of subsystems triggers the design of local controllers associated to successors to the subsystem only and (ii) the synthesis of a local controller for a subsystem requires information only from predecessors of the subsystem and it can be performed using only local computational resources. Our method hinges on local tube MPC controllers based on robust control invariant sets and it advances the PnP design procedure proposed in Riverso et al., 2012 in several directions. Quite notably, using recent results in the computation of robust control invariant sets, we show how critical steps in the design of a local controller can be solved through linear programming. Finally, an application of the proposed control design procedure to frequency control in power networks is presented

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Plug-and-Play Decentralized Model Predictive Control

    Full text link
    In this paper we consider a linear system structured into physically coupled subsystems and propose a decentralized control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. The design procedure is totally decentralized, since the synthesis of a local controller uses only information on a subsystem and its neighbors, i.e. subsystems coupled to it. We first derive tests for checking if a subsystem can be plugged into (or unplugged from) an existing plant without spoiling overall stability and constraint satisfaction. When this is possible, we show how to automatize the design of local controllers so that it can be carried out in parallel by smart actuators equipped with computational resources and capable to exchange information with neighboring subsystems. In particular, local controllers exploit tube-based Model Predictive Control (MPC) in order to guarantee robustness with respect to physical coupling among subsystems. Finally, an application of the proposed control design procedure to frequency control in power networks is presented.Comment: arXiv admin note: text overlap with arXiv:1210.692

    Plug-and-play distributed state estimation for linear systems

    Get PDF
    This paper proposes a state estimator for large-scale linear systems described by the interaction of state-coupled subsystems affected by bounded disturbances. We equip each subsystem with a Local State Estimator (LSE) for the reconstruction of the subsystem states using pieces of information from parent subsystems only. Moreover we provide conditions guaranteeing that the estimation errors are confined into prescribed polyhedral sets and converge to zero in absence of disturbances. Quite remarkably, the design of an LSE is recast into an optimization problem that requires data from the corresponding subsystem and its parents only. This allows one to synthesize LSEs in a Plug-and-Play (PnP) fashion, i.e. when a subsystem gets added, the update of the whole estimator requires at most the design of an LSE for the subsystem and its parents. Theoretical results are backed up by numerical experiments on a mechanical system
    • …
    corecore