115 research outputs found

    Exploiting Data-Dependent Structure for Improving Sensor Acquisition and Integration

    Get PDF
    This thesis deals with two approaches to building efficient representations of data. The first is a study of compressive sensing and improved data acquisition. We outline the development of the theory, and proceed into its uses in matrix completion problems via convex optimization. The aim of this research is to prove that a general class of measurement operators, bounded norm Parseval frames, satisfy the necessary conditions for random subsampling and reconstruction. We then demonstrate an example of this theory in solving 2-dimensional Fredholm integrals with partial measurements. This has large ramifications in improved acquisition of nuclear magnetic resonance spectra, for which we give several examples. The second part of this thesis studies the Laplacian Eigenmaps (LE) algorithm and its uses in data fusion. In particular, we build a natural approximate inversion algorithm for LE embeddings using L1 regularization and MDS embedding techniques. We show how this inversion, combined with feature space rotation, leads to a novel form of data reconstruction and inpainting using a priori information. We demonstrate this method on hyperspectral imagery and LIDAR. We also aim to understand and characterize the embeddings the LE algorithm gives. To this end, we characterize the order in which eigenvectors of a disjoint graph emerge and the support of those eigenvectors. We then extend this characterization to weakly connected graphs with clusters of differing sizes, utilizing the theory of invariant subspace perturbations and proving some novel results

    Using learned under-sampling pattern for increasing speed of cardiac cine MRI based on compressive sensing principles

    Get PDF
    Abstract This article presents a compressive sensing approach for reducing data acquisition time in cardiac cine magnetic resonance imaging (MRI). In cardiac cine MRI, several images are acquired throughout the cardiac cycle, each of which is reconstructed from the raw data acquired in the Fourier transform domain, traditionally called k-space. In the proposed approach, a majority, e.g., 62.5%, of the k-space lines (trajectories) are acquired at the odd time points and a minority, e.g., 37.5%, of the k-space lines are acquired at the even time points of the cardiac cycle. Optimal data acquisition at the even time points is learned from the data acquired at the odd time points. To this end, statistical features of the k-space data at the odd time points are clustered by fuzzy c-means and the results are considered as the states of Markov chains. The resulting data is used to train hidden Markov models and find their transition matrices. Then, the trajectories corresponding to transition matrices far from an identity matrix are selected for data acquisition. At the end, an iterative thresholding algorithm is used to reconstruct the images from the under-sampled k-space datasets. The proposed approaches for selecting the k-space trajectories and reconstructing the images generate more accurate images compared to alternative methods. The proposed under-sampling approach achieves an acceleration factor of 2 for cardiac cine MRI

    A New Hybrid Inversion Method for 2D Nuclear Magnetic Resonance Combining TSVD and Tikhonov Regularization

    Get PDF
    This paper is concerned with the reconstruction of relaxation time distributions in Nuclear Magnetic Resonance (NMR) relaxometry. This is a large-scale and ill-posed inverse problem with many potential applications in biology, medicine, chemistry, and other disciplines. However, the large amount of data and the consequently long inversion times, together with the high sensitivity of the solution to the value of the regularization parameter, still represent a major issue in the applicability of the NMR relaxometry. We present a method for two-dimensional data inversion (2DNMR) which combines Truncated Singular Value Decomposition and Tikhonov regularization in order to accelerate the inversion time and to reduce the sensitivity to the value of the regularization parameter. The Discrete Picard condition is used to jointly select the SVD truncation and Tikhonov regularization parameters. We evaluate the performance of the proposed method on both simulated and real NMR measurements

    Sparse and Redundant Representations for Inverse Problems and Recognition

    Get PDF
    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented

    Tensor Completion for Multidimensional Inverse Problems with Applications to Magnetic Resonance Relaxometry

    Get PDF
    This thesis deals with tensor completion for the solution of multidimensional inverse problems. We study the problem of reconstructing an approximately low rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, non-uniform sampling strategies, and parameter selection algorithms are developed. We derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property (RIP) based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by non-uniform sampling from a Parseval tight frame. We show how tensor completion can be used to solve multidimensional inverse problems arising in NMR relaxometry. Algorithms are developed for regularization parameter selection, including accelerated k-fold cross-validation and generalized cross-validation. These methods are validated on experimental and simulated data. We also derive condition number estimates for nonnegative least squares problems. Tensor recovery promises to significantly accelerate N-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments. Our methods could also be applied to other inverse problems arising in machine learning, image processing, signal processing, computer vision, and other fields

    Variational Methods for Discrete Tomography

    Get PDF
    Image reconstruction from tomographic sampled data has contoured as a stand alone research area with application in many practical situations, in domains such as medical imaging, seismology, astronomy, flow analysis, industrial inspection and many more. Already existing algorithms on the market (continuous) fail in being able to model the analysed object. In this thesis, we study discrete tomographic approaches that enable the addition of constraints in order to better fit the description of the analysed object and improve the end result. A particular focus is set on assumptions regarding the signals' sampling methodology, point at which we look towards the recently introduced Compressive Sensing (CS) approach, that has shown to return remarkable results based on how sparse a given signal is. However, research done in the CS field does not accurately relate to real world applications, as objects usually surrounding us are considered to be piece-wise constant (not sparse on their own) and the properties of the sensing matrices from the viewpoint of CS do not re ect real acquisition processes. Motivated by these shortcomings, we study signals that are sparse in a given representation, e.g. the forward-difference operator (total variation) and develop reconstruction diagrams (phase transitions) with the help of linear programming, convex analysis and duality that enable the user to pin-point the type of objects (with regard to their sparsity) which can be reconstructed, given an ensemble of acquisition directions. Moreover, a closer look is given to handling large data volumes, by adding different perturbations (entropic, quadratic) to the already constrained linear program. In empirical assessments, perturbation has lead to an increased reconstruction rate. Needless to say, the topic of this thesis is motivated by industrial applications where the acquisition process is restricted to a maximum of nine cameras, thus returning a severely undersampled inverse problem

    Relaxed regularization for linear inverse problems

    Get PDF
    We consider regularized least-squares problems of the form minx12Axb22+R(Lx)\min_{x} \frac{1}{2}\Vert Ax - b\Vert_2^2 + \mathcal{R}(Lx). Recently, Zheng et al., 2019, proposed an algorithm called Sparse Relaxed Regularized Regression (SR3) that employs a splitting strategy by introducing an auxiliary variable yy and solves minx,y12Axb22+κ2Lxy22+R(x)\min_{x,y} \frac{1}{2}\Vert Ax - b\Vert_2^2 + \frac{\kappa}{2}\Vert Lx - y\Vert_2^2 + \mathcal{R}(x). By minimizing out the variable xx we obtain an equivalent system miny12Fκygκ22+R(y)\min_{y} \frac{1}{2} \Vert F_{\kappa}y - g_{\kappa}\Vert_2^2+\mathcal{R}(y). In our work we view the SR3 method as a way to approximately solve the regularized problem. We analyze the conditioning of the relaxed problem in general and give an expression for the SVD of FκF_{\kappa} as a function of κ\kappa. Furthermore, we relate the Pareto curve of the original problem to the relaxed problem and we quantify the error incurred by relaxation in terms of κ\kappa. Finally, we propose an efficient iterative method for solving the relaxed problem with inexact inner iterations. Numerical examples illustrate the approach.Comment: 25 pages, 14 figures, submitted to SIAM Journal for Scientific Computing special issue Sixteenth Copper Mountain Conference on Iterative Method
    corecore