30,555 research outputs found

    Combining the radial basis function Eulerian and Lagrangian schemes with geostatistics for modeling of radionuclide migration through the geosphere

    Get PDF
    To assess the long-term safety of a radioactive waste disposal system, mathematical models are used to describe groundwater flow, chemistry, and potential radionuclide migration through geological formations. A number of processes need to be considered, when predicting the movement of radionuclides through the geosphere. The most important input data are obtained from field measurements, which are not available for all regions of interest. For example, the hydraulic conductivity as an input parameter varies from place to place. In such cases, geostatistical science offers a variety of spatial estimation procedures. Methods for solving the solute transport equation can also be classified as Eulerian, Lagrangian and mixed. The numerical solution of partial differential equations (PDE) has usually been obtained by finite-difference methods (FDM), finite-element methods (FEM), or finite-volume methods (FVM). Kansa introduced the concept of solving partial differential equations using radial basis functions (RBF) for hyperbolic, parabolic, and elliptic PDEs. The aim of this study was to present a relatively new approach to the modeling of radionuclide migration through the geosphere using radial basis function methods in Eulerian and Lagrangian coordinates. In this study, we determine the average and standard deviation of radionuclide concentration with regard to variable hydraulic conductivity, which was modelled by a geostatistical approach. Radionuclide concentrations will also be calculated in heterogeneous and partly heterogeneous 2D porous media. (C) 2004 Elsevier Ltd. All rights reserved

    The use of the mesh free methods (radial basis functions) in the modeling of radionuclide migration and moving boundary value problems

    Get PDF
    Recently, the mesh free methods (radial basis functions-RBFs) have emerged as a novel computing method in the scientific and engineering computing community. The numerical solution of partial differential equations (PDEs) has been usually obtained by finite difference methods (FDM), finite element methods (FEM) and boundary elements methods (BEM). These conventional numerical methods still have some drawbacks. For example, the construction of the mesh in two or more dimensions is a nontrivial problem. Solving PDEs using radial basis function (RBF) collocations is an attractive alternative to these traditional methods because no tedious mesh generation is required. We compare the mesh free method, which uses radial basis functions, with the traditional finite difference scheme and analytical solutions. We will present some examples of using RBFs in geostatistical analysis of radionuclide migration modeling. The advection-dispersion equation will be used in the Eulerian and Lagrangian forms. Stefan's or moving boundary value problems will also be presented. The position of the moving boundary will be simulated by the moving data centers method and level set method

    Solving high-order partial differential equations with indirect radial basis function networks

    Get PDF
    This paper reports a new numerical method based on radial basis function networks (RBFNs) for solving high-order partial differential equations (PDEs). The variables and their derivatives in the governing equations are represented by integrated RBFNs. The use of integration in constructing neural networks allows the straightforward implementation of multiple boundary conditions and the accurate approximation of high-order derivatives. The proposed RBFN method is verified successfully through the solution of thin-plate bending and viscous flow problems which are governed by biharmonic equations. For thermally driven cavity flows, the solutions are obtained up to a high Rayleigh number
    • ā€¦
    corecore