6 research outputs found

    On Jordan's measurements

    Get PDF
    The Jordan measure, the Jordan curve theorem, as well as the other generic references to Camille Jordan's (1838-1922) achievements highlight that the latter can hardly be reduced to the "great algebraist" whose masterpiece, the Trait\'e des substitutions et des equations alg\'ebriques, unfolded the group-theoretical content of \'Evariste Galois's work. The present paper appeals to the database of the reviews of the Jahrbuch \"uber die Fortschritte der Mathematik (1868-1942) for providing an overview of Jordan's works. On the one hand, we shall especially investigate the collective dimensions in which Jordan himself inscribed his works (1860-1922). On the other hand, we shall address the issue of the collectives in which Jordan's works have circulated (1860-1940). Moreover, the time-period during which Jordan has been publishing his works, i.e., 1860-1922, provides an opportunity to investigate some collective organizations of knowledge that pre-existed the development of object-oriented disciplines such as group theory (Jordan-H\"older theorem), linear algebra (Jordan's canonical form), topology (Jordan's curve), integral theory (Jordan's measure), etc. At the time when Jordan was defending his thesis in 1860, it was common to appeal to transversal organizations of knowledge, such as what the latter designated as the "theory of order." When Jordan died in 1922, it was however more and more common to point to object-oriented disciplines as identifying both a corpus of specialized knowledge and the institutionalized practices of transmissions of a group of professional specialists

    A history of Galois fields

    Get PDF
    This paper stresses a specific line of development of the notion of finite field, from Évariste Galois’s 1830 “Note sur la théorie des nombres,” and Camille Jordan’s 1870 Traité des substitutions et des équations algébriques, to Leonard Dickson’s 1901 Linear groups with an exposition of the Galois theory. This line of development highlights the key role played by some specific algebraic procedures. These intrinsically interlaced the indexations provided by Galois’s number-theoretic imaginaries with decompositions of the analytic representations of linear substitutions. Moreover, these procedures shed light on a key aspect of Galois’s works that had received little attention until now. The methodology of the present paper is based on investigations of intertextual references for identifying some specific collective dimensions of mathematics. We shall take as a starting point a coherent network of texts that were published mostly in France and in the U.S.A. from 1893 to 1907 (the “Galois fields network,” for short). The main shared references in this corpus were some texts published in France over the course of the 19th century, especially by Galois, Hermite, Mathieu, Serret, and Jordan. The issue of the collective dimensions underlying this network is thus especially intriguing. Indeed, the historiography of algebra has often put to the fore some specific approaches developed in Germany, with little attention to works published in France. Moreover, the “German abstract algebra” has been considered to have strongly influenced the development of the American mathematical community. Actually, this influence has precisely been illustrated by the example of Elliakim Hasting Moore’s lecture on “abstract Galois fields” at the Chicago congress in 1893. To be sure, this intriguing situation raises some issues of circulations of knowledge from Paris to Chicago. It also calls for reflection on the articulations between the individual and the collective dimensions of mathematics. Such articulations have often been analysed by appealing to categories such as nations, disciplines, or institutions (e.g., the “German algebra,” the “Chicago algebraic research school”). Yet, we shall see that these categories fail to characterize an important specific approach to Galois fields. The coherence of the Galois fields network had underlying it some collective interest for “linear groups in Galois fields.” Yet, the latter designation was less pointing to a theory, or a discipline, revolving around a specific object, i.e. Gln(Fpn) (p a prime number), than to some specific procedures. In modern parlance, general linear groups in Galois fields were introduced in this context as the maximal group in which an elementary abelian group (i.e., the multiplicative group of a Galois field) is a normal subgroup. The Galois fields network was actually rooted on a specific algebraic culture that had developed over the course of the 19th century. We shall see that this shared culture resulted from the circulation of some specific algebraic procedures of decompositions of polynomial representations of substitutions
    corecore