186 research outputs found

    Controllability distributions and systems approximations: a geometric approach

    Get PDF
    Given a nonlinear system we determine a relation at an equilibrium between controllability distributions defined for a nonlinear system and a Taylor series approximation of it. The value of such a relation is appreciated if we recall that the solvability conditions as well as the solutions to some control synthesis problems can be stated in terms of geometric concepts like controlled invariant (controllability) distributions. The relation between these distributions at the equilibrium will help us to decide when the solvability conditions of this kind of problems are equivalent for the nonlinear system and its approximatio

    General minimal residual Krylov subspace method for large-scale model reduction

    No full text
    Published versio

    Exact and approximate decoupling and noninteracting control problems

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent Univ., 1989.Thesis (Master's) -- Bilkent University, 1989.Includes bibliographical refences.In this thesis, we consider “exact” and “approximate” versions of the disturbance decoupling problem and the noninteracting control problem for linear, time-invariant systems. In the exact versions of these problems, we obtain necessary and sufficient conditions for the existence of an internally stabilizing dynamic output feedback controller such that prespecified interactions between certain sets of inputs and certain sets of outputs are annihilated in the closed-loop system. In the approximate version of these problems we require these interactions to be quenched in the ‘Hoo sense, up to any degree of accuracy. The solvability of the noninteracting control problems are shown to be equivalent to the existence of a common solution to two linear matrix equations over a principal ideal domain. A common solution to these equations exists if and only if the equations each have a solution and a bilateral matrix equation is solvable. This yields a system theoretical interpretation for the solvability of the original noninteracting control problem.Akar, NailM.S

    On the Reachability of a Feedback Controlled Leontief-Type Singular Model Involving Scheduled Production, Recycling and Non-Renewable Resources

    Get PDF
    This paper proposes and studies the reachability of a singular regular dynamic discrete Leontief-type economic model which includes production industries, recycling industries, and non-renewable products in an integrated way. The designed prefixed final state to be reached, under discussed reachability conditions, is subject to necessary additional positivity-type constraints which depend on the initial conditions and the final time for the solution to match such a final prescribed state. It is assumed that the model may be driven by both the demand and an additional correcting control in order to achieve the final targeted state in finite time. Formal sufficiency-type conditions are established for the proposed singular Leontief model to be reachable under positive feedback, correcting controls designed for appropriate demand/supply regulation. Basically, the proposed regulation scheme allows fixing a prescribed final state of economic goods stock in finite time if the model is reachable.RTI2018-094336-B-100 (MCIU/AEI/FEDER, UE) and Basque Government Grant IT1207-19

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    How to Compute Invariant Manifolds and their Reduced Dynamics in High-Dimensional Finite-Element Models

    Full text link
    Invariant manifolds are important constructs for the quantitative and qualitative understanding of nonlinear phenomena in dynamical systems. In nonlinear damped mechanical systems, for instance, spectral submanifolds have emerged as useful tools for the computation of forced response curves, backbone curves, detached resonance curves (isolas) via exact reduced-order models. For conservative nonlinear mechanical systems, Lyapunov subcenter manifolds and their reduced dynamics provide a way to identify nonlinear amplitude-frequency relationships in the form of conservative backbone curves. Despite these powerful predictions offered by invariant manifolds, their use has largely been limited to low-dimensional academic examples. This is because several challenges render their computation unfeasible for realistic engineering structures described by finite-element models. In this work, we address these computational challenges and develop methods for computing invariant manifolds and their reduced dynamics in very high-dimensional nonlinear systems arising from spatial discretization of the governing partial differential equations. We illustrate our computational algorithms on finite-element models of mechanical structures that range from a simple beam containing tens of degrees of freedom to an aircraft wing containing more than a hundred-thousand degrees of freedom
    corecore