978 research outputs found

    Measurement Analysis and Quantum Gravity

    Full text link
    We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.Comment: 31 pages, many conceptual clarifications included, new appendix added, to appear in Phys. Rev.

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur

    Control Problems for Conservation Laws with Traffic Applications

    Get PDF
    Conservation and balance laws on networks have been the subject of much research interest given their wide range of applications to real-world processes, particularly traffic flow. This open access monograph is the first to investigate different types of control problems for conservation laws that arise in the modeling of vehicular traffic. Four types of control problems are discussed - boundary, decentralized, distributed, and Lagrangian control - corresponding to, respectively, entrance points and tolls, traffic signals at junctions, variable speed limits, and the use of autonomy and communication. Because conservation laws are strictly connected to Hamilton-Jacobi equations, control of the latter is also considered. An appendix reviewing the general theory of initial-boundary value problems for balance laws is included, as well as an appendix illustrating the main concepts in the theory of conservation laws on networks

    Control Problems for Conservation Laws with Traffic Applications

    Get PDF
    Conservation and balance laws on networks have been the subject of much research interest given their wide range of applications to real-world processes, particularly traffic flow. This open access monograph is the first to investigate different types of control problems for conservation laws that arise in the modeling of vehicular traffic. Four types of control problems are discussed - boundary, decentralized, distributed, and Lagrangian control - corresponding to, respectively, entrance points and tolls, traffic signals at junctions, variable speed limits, and the use of autonomy and communication. Because conservation laws are strictly connected to Hamilton-Jacobi equations, control of the latter is also considered. An appendix reviewing the general theory of initial-boundary value problems for balance laws is included, as well as an appendix illustrating the main concepts in the theory of conservation laws on networks

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    Computational Methods for Optimal Control of Hybrid Systems

    Get PDF
    This thesis aims to find algorithms for optimal control of hybrid systems and explore them in sufficient detail to be able to implement the ideas in computational tools. By hybrid systems is meant systems with interacting continuous and discrete dynamics. Code for computations has been developed in parallel to the theory. The optimal control methods studied in this thesis are global, i.e. the entire state space is considered simultaneously rather than searching for locally optimal trajectories. The optimal value function that maps each state of the state space onto the minimal cost for trajectories starting in that state is central for global methods. It is often difficult to compute the value function of an optimal control problem, even for a purely continuous system. This thesis shows that a lower bound of the value function of a hybrid optimal control problem can be found via convex optimization in a linear program. Moreover, a dual of this optimization problem, parameterized in the control law, has been formulated via general ideas from duality in transportation problems. It is shown that the lower bound of the value function is tight for continuous systems and that there is no gap between the dual optimization problems. Two computational tools are presented. One is built on theory for piecewise affine systems. Various analysis and synthesis problems for this kind of systems are via piecewise quadratic Lyapunov-like functions cast into linear matrix inequalities. The second tool can be used for value function computation, control law extraction, and simulation of hybrid systems. This tool parameterizes the value function in its values in a uniform grid of points in the state space, and the optimization problem is formulated as a linear program. The usage of this tool is illustrated in a case study

    Numerical simulations of unsteady complex geometry flows

    Get PDF
    Numerical simulations have been here carried out for turbulent flows in geometries relevant to electronic systems. These include plane and ribbed channels and a central processor unit (CPU). Turbulent flows are random, three-dimensional and time-dependent. Their physics covers a wide range of time and space scales. When separation and reattachment occur, together with streamline curvature, modelling of these complex flows is further complicated. It is well known that, when simulating unsteady flows, the traditional, steady, linear Reynolds-averaged Navier-Stokes (RANS) models often do not give satisfactory predictions. By contrast, unsteady, non-linear RANS models may perform better. Hence the application of these models is considered here. The non-linear models studied involve explicit algebraic stress and cubic models. The Reynolds Stress Model (RSM) has been also evaluated. Modelling strategies more advanced than RANS, i.e. Large Eddy Simulation (LES) and zonal LES (ZLES), have also been tested. Validation results from URANS, LES and ZLES indicate that the level of agreement of predictions with benchmark data is generally consistent with that gained by the work of others. For the CPU case, flow field and heat transfer predictions from URANS, LES ; and ZLES are compared with measurements. Overall, for the flow field, ZLES and LES are more accurate than URANS. Zonal low Reynolds number URANS models (using a hear wall k-l model) perform better than high Reynolds number models. However, for heat transfer prediction, none of the low Reynolds number models investigated performed well
    corecore