6,469 research outputs found

    Constitutions of Value

    Get PDF
    Gathering an interdisciplinary range of cutting-edge scholars, this book addresses legal constitutions of value. Global value production and transnational value practices that rely on exploitation and extraction have left us with toxic commons and a damaged planet. Against this situation, the book examines law’s fundamental role in institutions of value production and valuation. Utilising pathbreaking theoretical approaches, it problematizes mainstream efforts to redeem institutions of value production by recoupling them with progressive values. Aiming beyond radical critique, the book opens up the possibility of imagining and enacting new and different value practices. This wide-ranging and accessible book will appeal to international lawyers, socio-legal scholars, those working at the intersections of law and economy and others, in politics, economics, environmental studies and elsewhere, who are concerned with rethinking our current ideas of what has value, what does not, and whether and how value may be revalued

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Modeling and Simulation in Engineering

    Get PDF
    The Special Issue Modeling and Simulation in Engineering, belonging to the section Engineering Mathematics of the Journal Mathematics, publishes original research papers dealing with advanced simulation and modeling techniques. The present book, “Modeling and Simulation in Engineering I, 2022”, contains 14 papers accepted after peer review by recognized specialists in the field. The papers address different topics occurring in engineering, such as ferrofluid transport in magnetic fields, non-fractal signal analysis, fractional derivatives, applications of swarm algorithms and evolutionary algorithms (genetic algorithms), inverse methods for inverse problems, numerical analysis of heat and mass transfer, numerical solutions for fractional differential equations, Kriging modelling, theory of the modelling methodology, and artificial neural networks for fault diagnosis in electric circuits. It is hoped that the papers selected for this issue will attract a significant audience in the scientific community and will further stimulate research involving modelling and simulation in mathematical physics and in engineering

    International Academic Symposium of Social Science 2022

    Get PDF
    This conference proceedings gathers work and research presented at the International Academic Symposium of Social Science 2022 (IASSC2022) held on July 3, 2022, in Kota Bharu, Kelantan, Malaysia. The conference was jointly organized by the Faculty of Information Management of Universiti Teknologi MARA Kelantan Branch, Malaysia; University of Malaya, Malaysia; Universitas Pembangunan Nasional Veteran Jakarta, Indonesia; Universitas Ngudi Waluyo, Indonesia; Camarines Sur Polytechnic Colleges, Philippines; and UCSI University, Malaysia. Featuring experienced keynote speakers from Malaysia, Australia, and England, this proceeding provides an opportunity for researchers, postgraduate students, and industry practitioners to gain knowledge and understanding of advanced topics concerning digital transformations in the perspective of the social sciences and information systems, focusing on issues, challenges, impacts, and theoretical foundations. This conference proceedings will assist in shaping the future of the academy and industry by compiling state-of-the-art works and future trends in the digital transformation of the social sciences and the field of information systems. It is also considered an interactive platform that enables academicians, practitioners and students from various institutions and industries to collaborate

    k-Means

    Get PDF

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Knowledge extraction from unstructured data

    Get PDF
    Data availability is becoming more essential, considering the current growth of web-based data. The data available on the web are represented as unstructured, semi-structured, or structured data. In order to make the web-based data available for several Natural Language Processing or Data Mining tasks, the data needs to be presented as machine-readable data in a structured format. Thus, techniques for addressing the problem of capturing knowledge from unstructured data sources are needed. Knowledge extraction methods are used by the research communities to address this problem; methods that are able to capture knowledge in a natural language text and map the extracted knowledge to existing knowledge presented in knowledge graphs (KGs). These knowledge extraction methods include Named-entity recognition, Named-entity Disambiguation, Relation Recognition, and Relation Linking. This thesis addresses the problem of extracting knowledge over unstructured data and discovering patterns in the extracted knowledge. We devise a rule-based approach for entity and relation recognition and linking. The defined approach effectively maps entities and relations within a text to their resources in a target KG. Additionally, it overcomes the challenges of recognizing and linking entities and relations to a specific KG by employing devised catalogs of linguistic and domain-specific rules that state the criteria to recognize entities in a sentence of a particular language, and a deductive database that encodes knowledge in community-maintained KGs. Moreover, we define a Neuro-symbolic approach for the tasks of knowledge extraction in encyclopedic and domain-specific domains; it combines symbolic and sub-symbolic components to overcome the challenges of entity recognition and linking and the limitation of the availability of training data while maintaining the accuracy of recognizing and linking entities. Additionally, we present a context-aware framework for unveiling semantically related posts in a corpus; it is a knowledge-driven framework that retrieves associated posts effectively. We cast the problem of unveiling semantically related posts in a corpus into the Vertex Coloring Problem. We evaluate the performance of our techniques on several benchmarks related to various domains for knowledge extraction tasks. Furthermore, we apply these methods in real-world scenarios from national and international projects. The outcomes show that our techniques are able to effectively extract knowledge encoded in unstructured data and discover patterns over the extracted knowledge presented as machine-readable data. More importantly, the evaluation results provide evidence to the effectiveness of combining the reasoning capacity of the symbolic frameworks with the power of pattern recognition and classification of sub-symbolic models

    Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks

    Full text link
    Throughout history, the development of artificial intelligence, particularly artificial neural networks, has been open to and constantly inspired by the increasingly deepened understanding of the brain, such as the inspiration of neocognitron, which is the pioneering work of convolutional neural networks. Per the motives of the emerging field: NeuroAI, a great amount of neuroscience knowledge can help catalyze the next generation of AI by endowing a network with more powerful capabilities. As we know, the human brain has numerous morphologically and functionally different neurons, while artificial neural networks are almost exclusively built on a single neuron type. In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors. Since an artificial network is a miniature of the human brain, introducing neuronal diversity should be valuable in terms of addressing those essential problems of artificial networks such as efficiency, interpretability, and memory. In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron. Then, we review studies of designing new neurons for artificial networks. Next, we discuss what gains can neuronal diversity bring into artificial networks and exemplary applications in several important fields. Lastly, we discuss the challenges and future directions of neuronal diversity to explore the potential of NeuroAI
    corecore