137,151 research outputs found

    Zariski Closures of Reductive Linear Differential Algebraic Groups

    Get PDF
    Linear differential algebraic groups (LDAGs) appear as Galois groups of systems of linear differential and difference equations with parameters. These groups measure differential-algebraic dependencies among solutions of the equations. LDAGs are now also used in factoring partial differential operators. In this paper, we study Zariski closures of LDAGs. In particular, we give a Tannakian characterization of algebraic groups that are Zariski closures of a given LDAG. Moreover, we show that the Zariski closures that correspond to representations of minimal dimension of a reductive LDAG are all isomorphic. In addition, we give a Tannakian description of simple LDAGs. This substantially extends the classical results of P. Cassidy and, we hope, will have an impact on developing algorithms that compute differential Galois groups of the above equations and factoring partial differential operators.Comment: 26 pages, more detailed proof of Proposition 4.

    Asymptotic integration of linear differential-algebraic equations

    Get PDF
    This paper is concerned with the asymptotic behavior of solutions of linear differential-algebraic equations with asymptotically constant coefficients. Some results of asymptotic integration which are well known for ordinary differential equations (ODEs) are extended to differential-algebraic equations (DAEs)

    Hopf algebras in dynamical systems theory

    Full text link
    The theory of exact and of approximate solutions for non-autonomous linear differential equations forms a wide field with strong ties to physics and applied problems. This paper is meant as a stepping stone for an exploration of this long-established theme, through the tinted glasses of a (Hopf and Rota-Baxter) algebraic point of view. By reviewing, reformulating and strengthening known results, we give evidence for the claim that the use of Hopf algebra allows for a refined analysis of differential equations. We revisit the renowned Campbell-Baker-Hausdorff-Dynkin formula by the modern approach involving Lie idempotents. Approximate solutions to differential equations involve, on the one hand, series of iterated integrals solving the corresponding integral equations; on the other hand, exponential solutions. Equating those solutions yields identities among products of iterated Riemann integrals. Now, the Riemann integral satisfies the integration-by-parts rule with the Leibniz rule for derivations as its partner; and skewderivations generalize derivations. Thus we seek an algebraic theory of integration, with the Rota-Baxter relation replacing the classical rule. The methods to deal with noncommutativity are especially highlighted. We find new identities, allowing for an extensive embedding of Dyson-Chen series of time- or path-ordered products (of generalized integration operators); of the corresponding Magnus expansion; and of their relations, into the unified algebraic setting of Rota-Baxter maps and their inverse skewderivations. This picture clarifies the approximate solutions to generalized integral equations corresponding to non-autonomous linear (skew)differential equations.Comment: International Journal of Geometric Methods in Modern Physics, in pres

    Extensions of differential representations of SL(2) and tori

    Full text link
    Linear differential algebraic groups (LDAGs) measure differential algebraic dependencies among solutions of linear differential and difference equations with parameters, for which LDAGs are Galois groups. The differential representation theory is a key to developing algorithms computing these groups. In the rational representation theory of algebraic groups, one starts with SL(2) and tori to develop the rest of the theory. In this paper, we give an explicit description of differential representations of tori and differential extensions of irreducible representation of SL(2). In these extensions, the two irreducible representations can be non-isomorphic. This is in contrast to differential representations of tori, which turn out to be direct sums of isotypic representations.Comment: 21 pages; few misprints corrected; Lemma 4.6 adde

    Multiplication of solutions for linear overdetermined systems of partial differential equations

    Full text link
    A large family of linear, usually overdetermined, systems of partial differential equations that admit a multiplication of solutions, i.e, a bi-linear and commutative mapping on the solution space, is studied. This family of PDE's contains the Cauchy-Riemann equations and the cofactor pair systems, included as special cases. The multiplication provides a method for generating, in a pure algebraic way, large classes of non-trivial solutions that can be constructed by forming convergent power series of trivial solutions.Comment: 27 page
    • …
    corecore