9,617 research outputs found

    Numerical Methods for the Fractional Laplacian: a Finite Difference-quadrature Approach

    Full text link
    The fractional Laplacian (−Δ)α/2(-\Delta)^{\alpha/2} is a non-local operator which depends on the parameter α\alpha and recovers the usual Laplacian as α→2\alpha \to 2. A numerical method for the fractional Laplacian is proposed, based on the singular integral representation for the operator. The method combines finite difference with numerical quadrature, to obtain a discrete convolution operator with positive weights. The accuracy of the method is shown to be O(h3−α)O(h^{3-\alpha}). Convergence of the method is proven. The treatment of far field boundary conditions using an asymptotic approximation to the integral is used to obtain an accurate method. Numerical experiments on known exact solutions validate the predicted convergence rates. Computational examples include exponentially and algebraically decaying solution with varying regularity. The generalization to nonlinear equations involving the operator is discussed: the obstacle problem for the fractional Laplacian is computed.Comment: 29 pages, 9 figure
    • …
    corecore