452 research outputs found

    Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework

    Get PDF
    Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiologists. Typically, these systems are trained using lesion annotations. However, lesion annotations are expensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invisible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI and derived parameter maps using convolutional neural networks and subsequently, combined with clinical features by a multi-classifier support vector machine scheme. The output of PCF is a probability value that indicates whether a patient is harboring clinically significant PCa (Gleason score ≥3+4) or not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis or as a triage tool to identify low-risk patients who do not require a clinical read

    Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review

    No full text
    International audienceProstate cancer is the second most diagnosed cancer of men all over the world. In the last decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed improving diagnosis.In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systemshave been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field ofresearch for the last ten years. This survey aims to provide a comprehensive review of the state of the art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aidedsystem. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to theresearch community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey

    Use of artificial intelligence in discerning the need for prostate biopsy and readiness for clinical practice: a systematic review protocol.

    Get PDF
    Variability and inaccuracies in the diagnosis of prostate cancer, and the risk of complications from invasive tests, have been extensively reported in the research literature. To address this, the use of artificial intelligence (AI) has been attracting increased interest in recent years to improve the diagnostic accuracy and objectivity. Although AI literature has reported promising results, further research is needed on the identification of evidence gaps that limit the potential adoption in prostate cancer screening practice. A systematic electronic search strategy will be used to identify peer-reviewed articles published from inception to the date of searches and indexed in CINAHL, IEEE Xplore, MEDLINE, Scopus, and Web of Science Core Collection databases. Registries including Cochrane Central Register of Controlled Trials, ClinicalTrials.gov and International Clinical Trials Registry Platform (ICTRP) will be searched for unpublished studies, and experts were invited to provide suitable references. The research and reporting will be based on Cochrane recommendations and PRISMA guidelines, respectively. The screening and quality assessment of the articles will be conducted by two of the authors independently, and conflicts will be resolved by a third author. This systematic review will summarise the use of AI techniques to predict the need for prostate biopsy based on clinical and demographic indicators, including its diagnostic accuracy and readiness for adoption in clinical practice. Systematic review registration: PROSPERO CRD4202233654

    Deep learning applications in the prostate cancer diagnostic pathway

    Get PDF
    Prostate cancer (PCa) is the second most frequently diagnosed cancer in men worldwide and the fifth leading cause of cancer death in men, with an estimated 1.4 million new cases in 2020 and 375,000 deaths. The risk factors most strongly associated to PCa are advancing age, family history, race, and mutations of the BRCA genes. Since the aforementioned risk factors are not preventable, early and accurate diagnoses are a key objective of the PCa diagnostic pathway. In the UK, clinical guidelines recommend multiparametric magnetic resonance imaging (mpMRI) of the prostate for use by radiologists to detect, score, and stage lesions that may correspond to clinically significant PCa (CSPCa), prior to confirmatory biopsy and histopathological grading. Computer-aided diagnosis (CAD) of PCa using artificial intelligence algorithms holds a currently unrealized potential to improve upon the diagnostic accuracy achievable by radiologist assessment of mpMRI, improve the reporting consistency between radiologists, and reduce reporting time. In this thesis, we build and evaluate deep learning-based CAD systems for the PCa diagnostic pathway, which address gaps identified in the literature. First, we introduce a novel patient-level classification framework, PCF, which uses a stacked ensemble of convolutional neural networks (CNNs) and support vector machines (SVMs) to assign a probability of having CSPCa to patients, using mpMRI and clinical features. Second, we introduce AutoProstate, a deep-learning powered framework for automated PCa assessment and reporting; AutoProstate utilizes biparametric MRI and clinical data to populate an automatic diagnostic report containing segmentations of the whole prostate, prostatic zones, and candidate CSPCa lesions, as well as several derived characteristics that are clinically valuable. Finally, as automatic segmentation algorithms have not yet reached the desired robustness for clinical use, we introduce interactive click-based segmentation applications for the whole prostate and prostatic lesions, with potential uses in diagnosis, active surveillance progression monitoring, and treatment planning

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Domain Adaptation for Novel Imaging Modalities with Application to Prostate MRI

    Get PDF
    The need for training data can impede the adoption of novel imaging modalities for deep learning-based medical image analysis. Domain adaptation can mitigate this problem by exploiting training samples from an existing, densely-annotated source domain within a novel, sparsely-annotated target domain, by bridging the differences between the two domains. In this thesis we present methods for adapting between diffusion-weighed (DW)-MRI data from multiparametric (mp)-MRI acquisitions and VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) MRI, a richer DW-MRI technique involving an optimized acquisition protocol for cancer characterization. We also show that the proposed methods are general and their applicability extends beyond medical imaging. First, we propose a semi-supervised domain adaptation method for prostate lesion segmentation on VERDICT MRI. Our approach relies on stochastic generative modelling to translate across two heterogeneous domains at pixel-space and exploits the inherent uncertainty in the cross-domain mapping to generate multiple outputs conditioned on a single input. We further extend this approach to the unsupervised scenario where there is no labeled data for the target domain. We rely on stochastic generative modelling to translate across the two domains at pixel space and introduce two loss functions that promote semantic consistency. Finally we demonstrate that the proposed approaches extend beyond medical image analysis and focus on unsupervised domain adaptation for semantic segmentation of urban scenes. We show that relying on stochastic generative modelling allows us to train more accurate target networks and achieve state-of-the-art performance on two challenging semantic segmentation benchmarks
    corecore