173 research outputs found

    Control de robots móviles mediante visión omnidireccional utilizando la geometría de tres vistas

    Get PDF
    Este trabajo trata acerca del control visual de robot móviles. Dentro de este campo tan amplio de investigación existen dos elementos a los que prestaremos especial atención: la visión omnidireccional y los modelos geométricos multi-vista. Las cámaras omnidireccionales proporcionan información angular muy precisa, aunque presentan un grado de distorsión significativo en dirección radial. Su cualidad de poseer un amplio campo de visión hace que dichas cámaras sean apropiadas para tareas de navegación robótica. Por otro lado, el uso de los modelos geométricos que relacionan distintas vistas de una escena permite rechazar emparejamientos erróneos de características visuales entre imágenes, y de este modo robustecer el proceso de control mediante visión. Nuestro trabajo presenta dos técnicas de control visual para ser usadas por un robot moviéndose en el plano del suelo. En primer lugar, proponemos un nuevo método para homing visual, que emplea la información dada por un conjunto de imágenes de referencia adquiridas previamente en el entorno, y las imágenes que toma el robot a lo largo de su movimiento. Con el objeto de sacar partido de las cualidades de la visión omnidireccional, nuestro método de homing es puramente angular, y no emplea información alguna sobre distancia. Esta característica, unida al hecho de que el movimiento se realiza en un plano, motiva el empleo del modelo geométrico dado por el tensor trifocal 1D. En particular, las restricciones geométricas impuestas por dicho tensor, que puede ser calculado a partir de correspondencias de puntos entre tres imágenes, mejoran la robustez del control en presencia de errores de emparejamiento. El interés de nuestra propuesta reside en que el método de control empleado calcula las velocidades del robot a partir de información únicamente angular, siendo ésta muy precisa en las cámaras omnidireccionales. Además, presentamos un procedimiento que calcula las relaciones angulares entre las vistas disponibles de manera indirecta, sin necesidad de que haya información visual compartida entre todas ellas. La técnica descrita se puede clasificar como basada en imagen (image-based), dado que no precisa estimar la localización ni utiliza información 3D. El robot converge a la posición objetivo sin conocer la información métrica sobre la trayectoria seguida. Para algunas aplicaciones, como la evitación de obstáculos, puede ser necesario disponer de mayor información sobre el movimiento 3D realizado. Con esta idea en mente, presentamos un nuevo método de control visual basado en entradas sinusoidales. Las sinusoides son funciones con propiedades matemáticas bien conocidas y de variación suave, lo cual las hace adecuadas para su empleo en maniobras de aparcamiento de vehículos. A partir de las velocidades de variación sinusoidal que definimos en nuestro diseño, obtenemos las expresiones analíticas de la evolución de las variables de estado del robot. Además, basándonos en dichas expresiones, proponemos un método de control mediante realimentación del estado. La estimación del estado del robot se obtiene a partir del tensor trifocal 1D calculado entre la vista objetivo, la vista inicial y la vista actual del robot. Mediante este control sinusoidal, el robot queda alineado con la posición objetivo. En un segundo paso, efectuamos la corrección de la profundidad mediante una ley de control definida directamente en términos del tensor trifocal 1D. El funcionamiento de los dos controladores propuestos en el trabajo se ilustra mediante simulaciones, y con el objeto de respaldar su viabilidad se presentan análisis de estabilidad y resultados de simulaciones y de experimentos con imágenes reales

    Ambiguities in a Problem in Planar Geodesy

    Full text link
    This is a study of a problem in geodesy with methods from complex algebraic geometry: for a fixed number of measure points and target points at unknown position in the Euclidean plane, we study the problem of determining their relative position when the viewing angles between target points seen from measure points are known. In particular, we determine all situations in which there is more than one solution

    Modelling the human perception of shape-from-shading

    Get PDF
    Shading conveys information on 3-D shape and the process of recovering this information is called shape-from-shading (SFS). This thesis divides the process of human SFS into two functional sub-units (luminance disambiguation and shape computation) and studies them individually. Based on results of a series of psychophysical experiments it is proposed that the interaction between first- and second-order channels plays an important role in disambiguating luminance. Based on this idea, two versions of a biologically plausible model are developed to explain the human performances observed here and elsewhere. An algorithm sharing the same idea is also developed as a solution to the problem of intrinsic image decomposition in the field of image processing. With regard to the shape computation unit, a link between luminance variations and estimated surface norms is identified by testing participants on simple gratings with several different luminance profiles. This methodology is unconventional but can be justified in the light of past studies of human SFS. Finally a computational algorithm for SFS containing two distinct operating modes is proposed. This algorithm is broadly consistent with the known psychophysics on human SFS

    Interactions between Local and Global Signals in Global Motion Flow Processing

    Get PDF
    corecore