9 research outputs found

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    The Application Of crashing A Project Network To Solve The Time/cost Tradeoff In Recapitalization Of The Uh-60a Helicopter

    Get PDF
    Since the beginning of project management, people have been asked to perform more with less in expeditious time while attempting to balance the inevitable challenge of the time/cost tradeoff. This is especially true within the Department of Defense today in prosecuting the Global War on Terrorism both in Afghanistan and Iraq. An unprecedented and consistent level of Operational Tempo has generated heavy demands on current equipment and has subsequently forced the need to recapitalize several legacy systems until suitable replacements can be implemented. This paper targets the UH-60A:A Recapitalization Program based at the Corpus Christi Army Depot in Corpus Christi, Texas. More specifically, we examine one of the nine existing project sub-networks within the UH-60A:A program, the structural/electrical upgrade phase. In crashing (i.e. adding manpower or labor hours) the network, we determine the minimal cost required to reduce the total completion time of the 68 activities within the network before a target completion time. A linear programming model is formulated and then solved for alternative scenarios. The first scenario is prescribed by the program manager and consists of simply hiring additional contractors to augment the existing personnel. The second and third scenarios consist of examining the effects of overtime, both in an aggressive situation (with limited longevity) and a more moderate situation (displaying greater sustainability over time). The initial linear programming model (Scenario 1) is crashed using estimates given from the program scheduler. The overtime models are crashed using reduced-time crash estimates. For Scenarios 2 and 3, the crashable times themselves are reduced by 50% and 75%, respectively. Initial results indicate that a completion time of 79.5 days is possible without crashing any activities in the network. The five-year historical average completion time is 156 days for this network. We continue to crash the network in each of the three scenarios and determine that the absolute shortest feasible completion times, 73 days for Scenario 1, 76 days for Scenario 2, and 77.5 days for Scenario 3. We further examine the models to observe similarities and differences in which activities get targeted for crashing and how that reduction affects the critical path of the network. These results suggests an in-depth study of using linear programming and applying it to project networks to grant project managers more critical insight that may help them better achieve their respective objectives. This work may also be useful as the groundwork for further refinement and application for maintenance managers conducting day-to-day unit level maintenance operations

    Modeling and Solving Resource Constrained Project Scheduling Problems with Remanufacturing Activities

    Get PDF
    Resource constrained project scheduling problem (RCPSP) is one of the most important problems in industrial engineering and production management. Owing to environmental concerns, companies are paying more attention to the remanufacturing of end-of-life products. In this thesis, a mathematical model is developed considering remanufacturing activities in resource constrained project scheduling problem. The mathematical model considers recycle rate in multiple operation modes and several components of cost, including bonus, penalty, and others. A set of project network instance are generated using RanGen1 for evaluation. To solve the model, a three-stage heuristic method is developed in CPLEX 12.8 environment. Result shows that proposed method can reach a close-to-optimal solution within acceptable time limit

    An Integrated Engineering-Computation Framework for Collaborative Engineering: An Application in Project Management

    Get PDF
    Today\u27s engineering applications suffer from a severe integration problem. Engineering, the entire process, consists of a myriad of individual, often complex, tasks. Most computer tools support particular tasks in engineering, but the output of one tool is different from the others\u27. Thus, the users must re-enter the relevant information in the format required by another tool. Moreover, usually in the development process of a new product/process, several teams of engineers with different backgrounds/responsibilities are involved, for example mechanical engineers, cost estimators, manufacturing engineers, quality engineers, and project manager. Engineers need a tool(s) to share technical and managerial information and to be able to instantly access the latest changes made by one member, or more, in the teams to determine right away the impacts of these changes in all disciplines (cost, time, resources, etc.). In other words, engineers need to participate in a truly collaborative environment for the achievement of a common objective, which is the completion of the product/process design project in a timely, cost effective, and optimal manner. In this thesis, a new framework that integrates the capabilities of four commercial software, Microsoft Excel™ (spreadsheet), Microsoft Project™ (project management), What\u27s Best! (an optimization add-in), and Visual Basic™ (programming language), with a state-of-the-art object-oriented database (knowledge medium), InnerCircle2000™ is being presented and applied to handle the Cost-Time Trade-Off problem in project networks. The result was a vastly superior solution over the conventional solution from the viewpoint of data handling, completeness of solution space, and in the context of a collaborative engineering-computation environment

    Reactive scheduling to treat disruptive events in the MRCPSP

    Get PDF
    Esta tesis se centra en diseñar y desarrollar una metodología para abordar el MRCPSP con diversas funciones objetivo y diferentes tipos de interrupciones. En esta tesis se exploran el MRCPSP con dos funciones objetivo, a saber: (1) minimizar la duración del proyecto y (2) maximizar el valor presente neto del proyecto. Luego, se tiene en cuenta dos tipos diferentes de interrupciones, (a) interrupción de duración, e (b) interrupción de recurso renovable. Para resolver el MRCPSP, en esta tesis se proponen tres estrategias metaheurísticas: (1) algoritmo memético para minimizar la duración del proyecto, (2) algoritmo adaptativo de forrajeo bacteriano para maximizar el valor presente neto del proyecto y (3) algoritmo de optimización multiobjetivo de forrajeo bacteriano (MBFO) para resolver el MRCPSP con eventos de interrupción. Para juzgar el rendimiento del algoritmo memético y de forrajeo bacteriano propuestos, se ha llevado a cabo un extenso análisis basado en diseño factorial y diseño Taguchi para controlar y optimizar los parámetros del algoritmo. Además se han puesto a prueba resolviendo las instancias de los conjuntos más importantes en la literatura: PSPLIB (10,12,14,16,18,20 y 30 actividades) y MMLIB (50 y 100 actividades). También se ha demostrado la superioridad de los algoritmos metaheurísticos propuestos sobre otros enfoques heurísticos y metaheurísticos del estado del arte. A partir de los estudios experimentales se ha ajustado la MBFO, utilizando un caso de estudio.DoctoradoDoctor en Ingeniería Industria

    Models and algorithms for deterministic and robust discrete time/cost trade-off problems

    Get PDF
    Ankara : The Department of Management, Bilkent University, 2008.Thesis (Ph.D.) -- Bilkent University, 2008.Includes bibliographical references leaves 136-145Projects are subject to various sources of uncertainties that often negatively impact activity durations and costs. Therefore, it is of crucial importance to develop effective approaches to generate robust project schedules that are less vulnerable to disruptions caused by uncontrollable factors. This dissertation concentrates on robust scheduling in project environments; specifically, we address the discrete time/cost trade-off problem (DTCTP). Firstly, Benders Decomposition based exact algorithms to solve the deadline and the budget versions of the deterministic DTCTP of realistic sizes are proposed. We have included several features to accelerate the convergence and solve large instances to optimality. Secondly, we incorporate uncertainty in activity costs. We formulate robust DTCTP using three alternative models. We develop exact and heuristic algorithms to solve the robust models in which uncertainty is modeled via interval costs. The main contribution is the incorporation of uncertainty into a practically relevant project scheduling problem and developing problem specific solution approaches. To the best of our knowledge, this research is the first application of robust optimization to DTCTP. Finally, we introduce some surrogate measures that aim at providing an accurate estimate of the schedule robustness. The pertinence of proposed measures is assessed through computational experiments. Using the insight revealed by the computational study, we propose a two-stage robust scheduling algorithm. Furthermore, we provide evidence that the proposed approach can be extended to solve a scheduling problem with tardiness penalties and earliness rewards.Hazır, ÖncüPh.D

    Optimization-Based Architecture for Managing Complex Integrated Product Development Projects

    Get PDF
    By the mid-1990\u27s, the importance of early introduction of new products to both market share and profitability became fully understood. Thus, reducing product time-to-market became an essential requirement for continuous competition. Integrated Product Development (IPD) is a holistic approach that helps to overcome problems that arise in a complex product development project. IPD emphasis is to provide a framework for an effective planning and managing of engineering projects. Coupled with the fact that about 70% of the life cycle cost of a product is committed at early design phases, the motivation for developing and implementing more effective methodologies for managing the design process of IPD projects became very strong. The main objective of this dissertation is to develop an optimization-based architecture that helps guiding the project manager efforts for managing the design process of complex integrated product development projects. The proposed architecture consists of three major phases: system decomposition, process re-engineering, and project scheduling and time-cost trade-off analysis. The presented research contributes to five areas of research: (1) Improving system performance through efficient re-engineering of its structure. The Dependency Structure Matrix (DSM) provides an effective tool for system structure understanding. An optimization algorithm called Simulated Annealing (SA) was implemented to find an optimal activity sequence of the DSM representing a design project. (2) A simulation-based optimization framework that integrates simulated annealing with a commercial risk analysis software called Crystal Ball was developed to optimally re-sequence the DSM activities given stochastic activity data. (3) Since SA was originally developed to handle deterministic objective functions, a modified SA algorithm able to handle stochastic objective functions was presented. (4) A methodology for the conversion of the optimally sequenced DSM into an equivalent DSM, and then into a project schedule was proposed. (5) Finally, a new hybrid time-cost trade-off model based on the trade-off of resources for project networks was presented. These areas of research were further implemented through a developed excel add-in called “optDSM”. The tool was developed by the author using Visual Basic for Application (VBA) programming language

    Scheduling with controllable processing times in a CNC environment

    Get PDF
    Cataloged from PDF version of article.Flexible manufacturing systems give a manufacturer some capabilities to consider and solve different manufacturing problems simultaneously instead of one by one in a sequential manner. Using those makes her more competitive in the market. One of those capabilities is controllable processing times. By using this capability, the due date requirements of customers can be satisfied much more effectively. Processing times of the jobs in a CNC machine can be easily controlled via machining conditions such that they can be increased or decreased at the expense of tooling cost. In this study, we consider the problem of scheduling a set of jobs by minimizing the sum of total weighted tardiness, tooling and machining costs on a single CNC machine. This problem is NP-hard since the total weighted tardiness problem is NP-hard alone. Moreover, the problem is non-linear because of the nature of the tooling cost. We proposed a DP-based heuristic to solve the problem for a given sequence and designed a local search algorithm that uses it as a base heuristic.İlhan, TaylanM.S
    corecore