18 research outputs found

    Filter And Observer Design For Polynomial Discrete-Time Systems: A Sum Of Squares Based Approach

    Get PDF
    The polynomial discrete-time systems are the type of systems where the dynamics of the systems are described in polynomial forms.This system is classified as an important class of nonlinear systems due to the fact that many nonlinear systems can be modelled as,transformed into,or approximated by polynomial systems.The focus of this thesis is to address the problem of filter and observer design for polynomial discrete-time systems.The main reason for focusing on this area is because the filter and observer design for such polynomial discrete-time systems is categorised as a difficult problem.This is due to the fact that the relation between the Lyapunov matrix and the filter and observer gain is not jointly convex when the parameter-dependent or state-dependent Lyapunov function is under consideration.Therefore the problem cannot possibly be solved via semidefinite programming (SDP).In light of the aforementioned problem, we establish novel methodologies of designing filters for estimating the state of the systems both with and without H∞ performance and also designing an observer for state estimation and also as a controller.We show that through our proposed methodologies,a less conservative design procedure can be rendered for the filter and observer design.In particular,a so-called integrator method is proposed in this research work where an integrator is incorporated into the filter and observer structures.In doing so, the original systems can be transformed into augmented systems.Furthermore,the state-dependent function is selected in a way that its matrix is dependent only upon the original system state.Through this selection,a convex solution to the filter and observer design can be obtained efficiently.The existence of such filter and observer are given in terms of the solvability of polynomial matrix inequalities (PMIs).The problem is then formulated as sum of squares (SOS) constraints,therefore it can be solved by any SOS solvers.In this research work,SOSTOOLS is used as a SOS solver.Finally,to demonstrate the effectiveness and advantages of the proposed design methodologies in this thesis,numerical examples are given in filter design system.The simulation results show that the proposed design methodologies can estimate and stabilise the systems and achieve the prescribed performance requirements

    Output feedback robust synchronization of networked Lur'e Systems with incrementally passive nonlinearities

    Get PDF
    In this paper we deal with robust synchronization problems for uncertain dynamical networks of identical Lur’e systems diffusively interconnected by means of measurement outputs. In contrast to stabilization of one single Lur’e system with a passive static nonlinearity in the negative feedback loop, in the present paper the feedback nonlinearities are assumed to be incrementally passive. We assume that the interconnection topologies among these Lur’e agents are undirected and con- nected throughout this paper. A distributed dynamical protocol is proposed. We establish sufficient conditions for the existence of such protocol that robustly synchronizes the Lur’e dynamical network. The protocol parameter matrices are computed in terms of the system matrices defining the individual agent, but also the second smallest and largest eigenvalues of the Laplacian matrix associated with the interconnection topology

    Semi-blind robust indentification and robust control approach to personalized anemia management.

    Get PDF
    The homeostatic blood hemoglobin (Hb) content of a healthy individual varies between the range of 14-18 g/dL for a male and 12-16 g/dL for a female. This quantity provides an estimate of red blood cell (RBC) count in circulation at any given moment. RBC is a protein carrying substance that transports oxygen from the lungs to other tissues in the body and is synthesized by the kidney through a process known as erythropoiesis where erythropoietin is secreted in response to hypoxia. In this regard, the kidneys act not only as a controller but also as a sensor in regulating RBC levels. Patients with chronic kidney diseases (CKD) have dysfunctional kidneys that compromise these fundamental kidney functions. Consequently, anemia is developed. Anemics of CKD have low levels of Hb that must be controlled and properly regulated to the appropriate therapeutic range. Until the discovery of recombinant human erythropoietin (EPO) over three decades ago, treatment procedure of anemia conditions primarily involved repeated blood transfusions–a process known to be associated with several other health related complications. This discovery resulted in a paradigm shift in anemia management from blood transfusions to dosage therapies. The main objective of anemia management with EPO is to increase patients’ hemoglobin level from low to a suitable therapeutic range as defined by the National Kidney Foundation-Kidney Disease Outcomes Quality Initiative (NKF-KDOI) to be in the range of 10 - 12 g/dL while avoiding response values beyond 14 g/dL to prevent other complications associated with EPO medication. It is therefore imperative that clinicians balance dosage efficacy and toxicity in anemia management therapies. At most treatment facilities, protocols are developed to conform to NKF-KDOI recommendations. These protocols are generally based on EPO packet inserts and the expected Hb responses from the average patient. The inevitable variability within the patient group makes this “one-size-fits-all” dosing scheme non-optimal, at best, and potentially dangerous for certain group of patients that do not adhere to the notion of expected “average” response. A dosing strategy that is tailored to the individual patients’ response to EPO medication could provide a better alternative to the current treatment methods. An objective of this work is to develop EPO dosing strategies tailored to the individual patients using robust identification techniques and modern feedback control methods. First, a unique model is developed based on Hb responses and dosage EPO of the individual patients using semi-blind robust identification techniques. This provides a nominal model and a quantitative information on model uncertainty that accounts for other possible patient’s dynamics not considered in the modeling process. This is in the framework of generalized interpolation theory. Then, from the derived nominal model and the associated uncertainty information, robust controller is designed via the =H1-synthesis methods to provide a new dosing strategies for the individual patients. The H1 control theory has a feature of minimizing the influence of some unknown worst case gain disturbance on a system. Finally, a framework is provided to strategize dosing protocols for newly admitted patients

    Controller Design for Active Vibration Damping with Inertial Actuators

    Get PDF
    In the machining industry, there is a constant need to improve productivity while maintaining required dimensional tolerances and surface quality. The self-excited vibration called chatter is one of the main factors limiting machining productivity. Chatter produces unstable cutting conditions during machining and unstable forces will damage and shorten the life of the machine tool. It can also damage the cutting tool, machining components as well as produce a poor surface finish on the workpiece. Researchers have developed various chatter suppression techniques such as changing process parameters, spindle speeds, and using passive dampers. However, many of these methods are not very robust to changing dynamics in the machine tool due to changing machine positioning, cutting setups, etc. Active vibration damping with a force actuator is a robust method of adding damping by due to its bandwidth and variable controller gains. However, the commissioning of the controller design for the actuators is not trivial and requires significant manual tuning to reach optimal productivity. The research presented in this thesis aims to simplify and automate the controller design process for force actuators. A frequency domain, sensitivity based automatic controller tuning method for force actuators has been developed. This method uses the measured actuator dynamics and open-loop system dynamics to develop a prediction tool for closed-loop responses without needing to have the complete system model (model free). By monitoring the predicted closed-loop response of various virtually designed controllers, an optimal controller is found amongst the candidate parameter values. The stability of the system and actuator is monitored during the search to ensure that the system is stable throughout its bandwidth that the actuator does not become saturated. The controller is then experimentally tested to ensure that the predicted output is the same as the real output. In cases where the system has several vibration modes that are in counter-phase and close in frequency, the model-free approach does not perform well. A more complex model-based control law has also been developed and implemented. The method automatically identifies a transfer function model for the measured open-loop system dynamics and synthesizes mixed-sensitivity optimization based controller to damp out the modes in counter-phase. In order to verify that the model-based controllers can reduce vibration modes in counter-phase, a small-scale experimental setup was developed to mimic machine tools with vibration modes in counter-phase. A flexure was designed and fabricated. A shaker from Modal Shop is used as an active damping actuator to reduce the flexure’s vibration modes. It was concluded that while the model-based controller synthesis techniques were able to damp the vibration modes in counter phase, the flexure was too simplistic and the model-free controller was able to achieve similar results

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    Design and verification of Guidance, Navigation and Control systems for space applications

    Get PDF
    In the last decades, systems have strongly increased their complexity in terms of number of functions that can be performed and quantity of relationships between functions and hardware as well as interactions of elements and disciplines concurring to the definition of the system. The growing complexity remarks the importance of defining methods and tools that improve the design, verification and validation of the system process: effectiveness and costs reduction without loss of confidence in the final product are the objectives that have to be pursued. Within the System Engineering context, the modern Model and Simulation based approach seems to be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) starts from the idea that it is possible at any moment to verify, through simulation sessions and according to the phase of the life cycle, the feasibility, the capabilities and the performances of the system. Simulation is used during the engineering process and can be classified from fully numerical (i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware simulation (where the system is represented by real hardware and software modules in their operational environment). Within this range of simulations, a few important stages can be defined: algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the loop (HIL), and hybrid configurations among those. The research activity, in which this thesis is inserted, aims at defining and validating an iterative methodology (based on Model and Simulation approach) in support of engineering teams and devoted to improve the effectiveness of the design and verification of a space system with particular interest in Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the common interest and background of the groups involved in this research program (ASSET at Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently complex (demanding both specialist knowledge and system engineer skills) and vital for whatever spacecraft and, last but not least the verification of its behavior is difficult on ground because strong limitations on dynamics and environment reproduction arise. Considering that the verification should be performed along the entire product life cycle, a tool and a facility, a simulator, independent from the complexity level of the test and the stage of the project, is needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the proposed methodology. It has been entirely designed and developed from the requirements definition to the software implementation and hardware construction, up to the assembly, integration and verification of the first simulator release. In addition, the development of this technology met the modern standards on software development and project management. StarSim is a unique and self-contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and loss of information that may arise using different software, simulation tools and facilities along the various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real world, ease of data management, effectiveness and congruence of the outputs with respect to the inputs are the sought-after features in the StarSim design. For every iteration of the methodology, StarSim guarantees the possibility to verify the behavior of the system under test thanks to the permanent availability of virtual models, that substitute all those elements not yet available and all the non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user friendly database of models and interfaces that cover different levels of detail and fidelity, and supports the updating of the database allowing the user to create custom models (following few, simple rules). Progressively, pieces of the on board software and hardware can be introduced without stopping the process of design and verification, avoiding delays and loss of resources. StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an educational project carried out by students and researchers of the “CubeSat Team Polito” in which StarSim has been mainly used for the payload development, an Active Attitude Determination and Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been performed along all the phases of the project, successfully verifying a great number of functional and operational requirements. In particular, attitude determination algorithms, control laws, modes of operation have been selected and verified; software has been developed step by step and the bugs-free executable files have been loaded on the micro-controller. All the interfaces and protocols as well as data and commands handling have been verified. Actuators, logic and electrical circuits have been designed, built and tested and sensors calibration has been performed. Problems such as real time and synchronization have been solved and a complete hardware in the loop simulation test campaign both for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a great number of CubeSat functional and operational requirements. The case study represents the first validation of the methodology with the first release of StarSim. It has been proven that the methodology is effective in demonstrating that improving the design and verification activities is a key point to increase the confidence level in the success of a space mission

    Robust state estimation for the control of flexible robotic manipulators

    Get PDF
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.Ph.D

    Robust Nonlinear Model Predictive Control using Polynomial Chaos Expansions

    Get PDF
    The performance of model predictive controllers (MPCs) is largely dependent on the accuracy of the model predictions as compared to the actual plant outputs. Irrespective of the model used, first-principles (FP) or empirical, plant-model mismatch is unavoidable. Consequently, model based controllers must be robust to mismatch between the model predictions and the actual process behavior. Controllers that are not robust may result in poor closed loop response and even instability. Model uncertainty can generally be formulated into two broader forms, parametric uncertainty and unstructured uncertainty. Most of the current robust nonlinear MPC have been based on FP-model where only robustness to bounded disturbances rather than parametric uncertainty has been addressed. Systematically accounting for parametric uncertainty in the robust design has been difficult in FP-models due to varying forms in which uncertain parameters occur in the models. To address parametric uncertainty robustness tests based on Structured Singular Value (SSV) and Linear Matrix Inequalities (LMI) have been proposed previously, however these algorithms tend to be conservative because they consider worst-case scenarios and they are also computationally expensive. For instance the SSV calculation is NP-hard and as a result it is not suitable for fast computations. This provides motivation to work on robust control algorithms addressing both parametric and unstructured uncertainty with fast computation times. To facilitate the design of robust controllers which can be computed fast, empirical models are used in which parametric uncertainty is propagated using Polynomial Chaos Expansion (PCE) of parameters. PCE assists in speeding up the computations by providing an analytical expression for the L^2-norm of model predictions while also eliminating the need to design for the worst-case scenario which results in conservatism. Another way of speeding up computations in MPC algorithms is by grouping subsets of available the inputs and outputs into subsystems and by controlling each of the subsystems by MPC controllers of lower dimensions. This latter approach, referred in the literature as Distributed MPC, has been tackled by different strategies involving different degrees of coordination between subsystems but it has not been studied in terms of robustness to model error. Based on the above considerations the current work investigates different robustness aspects of predictive control algorithms for nonlinear processes with special emphasis on the following three situations, i) a nonlinear predictive control based on a Volterra series model where the uncertain parameters are formulated as PCE’s, ii) The application of a PCE-based approach to control and optimization of bioreactors where the model is based on dynamic flux metabolic models, and iii) A Robust Distributed MPC with a robust estimator that is needed to account for the interactions between sub-systems in distributed control
    corecore