636 research outputs found

    Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant

    Get PDF
    The energy efficiency of industrial plants is an important issue in any type of business but particularly in the chemical industry. Not only is it important in order to reduce costs, but also it is necessary even more as a means of reducing the amount of fuel that gets wasted, thereby improving productivity, ensuring better product quality, and generally increasing profits. This article describes a decision system developed for optimizing the energy efficiency of a petrochemical plant. The system has been developed after a data mining process of the parameters registered in the past. The designed system carries out an optimization process of the energy efficiency of the plant based on a combined algorithm that uses the following for obtaining a solution: On the one hand, the energy efficiency of the operation points occurred in the past and, on the other hand, a module of two neural networks to obtain new interpolated operation points. Besides, the work includes a previous discriminant analysis of the variables of the plant in order to select the parameters most important in the plant and to study the behavior of the energy efficiency index. This study also helped ensure an optimal training of the neural networks. The robustness of the system as well as its satisfactory results in the testing process (an average rise in the energy efficiency of around 7%, reaching, in some cases, up to 45%) have encouraged a consulting company (ALIATIS) to implement and to integrate the decision system as a pilot software in an SCADA

    An Experimental Analysis on Dispatching Rules for the Train Platforming Problem in Busy Complex Passenger Stations

    Get PDF
    This paper presents the scheduling models for trainplatforming problem (TPP) by using mixed integer linear programming and job shop scheduling theory. First, the operation procedures and scheduled time adjustment costs of different train types specific to busy complex passenger stations are explicitly represented. Second, a multi-criteria scheduling model (MCS) for TPP without earliness and tardiness time window (ETTW) and a time window scheduling model (TWS) with ETTW for TPP are proposed. Third, various dispatching rules were designed by incorporating the dispatcher experiences with modern scheduling theory and a rule-based metaheuristic to solve the above model is presented. With solution improvement strategies analogous to those used in practice by dispatchers, the realistic size problems in acceptable time can be solved.</p

    A mixed-integer linear program for real-time train platforming management

    Get PDF
    Unexpected events may perturb operations and generate conflicts that must be addressed promptly to limit delay propagation and other negative impacts on the network. The real-time railway traffic management problem deals with disruptions in railway networks, including tracks, junctions and stations. When they happen in station areas, new decisions involving train platforming, rerouting, ordering and timing must be made in real time. This paper explores a mesoscopic approach to deal with disruptions at rail stations. A mathematical programming-based model is proposed to determine re-routing and re-scheduling decisions for railway traffic in a station area. The key steps of the approach, which simulate what happens in real-time traffic management, are: i) an initial off-line preprocessing stage of the set of feasible routes originally planned, ii) a second preprocessing stage which analyses the disruption and sets the necessary parameters for the last step iii), which consists of an integer programming model that seeks solutions which minimise deviations from planned train schedules and assigns new and appropriate platforms (if necessary). Computational experiments show that realistic instances can be solved near to optimality using CPLEX in very short times. This allows to consider this methodology for solving real time traffic management problems.Peer ReviewedPostprint (published version

    Robust Train Routing and Online Re-scheduling

    Get PDF
    Train Routing is a problem that arises in the early phase of the passenger railway planning process, usually several months before operating the trains. The main goal is to assign each train a stopping platform and the corresponding arrival/departure paths through a railway station. It is also called Train Platforming when referring to the platform assignment task. Railway stations often represent bottlenecks and train delays can easily disrupt the routing schedule. Thereby railway stations are responsible for a large part of the delay propagation in the whole network. In this research we present different models to compute robust routing schedules and we study their power in an online context together with different re-scheduling strategies. We also design a simulation framework and use it to evaluate and compare the effectiveness of the proposed robust models and re-scheduling algorithms using real-world data from Rete Ferroviaria Italiana, the main Italian Railway Infrastructure Manager

    Operations Research Modeling of Cyclic Train Timetabling, Cyclic Train Platforming, and Bus Routing Problems

    Get PDF
    Public transportation or mass transit involves the movement of large numbers of people between a given numbers of locations. The services provided by this system can be classified into three groups: (i) short haul: a low-speed service within small areas with high population; (ii) city transit: transporting people within a city; and (iii) long haul: a service with long trips, few stops, and high speed (Khisty and Lall, 2003). It can be also classified based on local and express services. The public transportation planning includes five consecutive steps: (i) the network design and route design; (ii) the setting frequencies or line plan; (iii) the timetabling; (iv) the vehicle scheduling; and (v) the crew scheduling and rostering (Guihaire and Hao, 2008; Schöbel, 2012). The first part of this dissertation considers three problems in passenger railway transportation. It has been observed that the demand for rail travel has grown rapidly over the last decades and it is expected that the growth continues in the future. High quality railway services are needed to accommodate increasing numbers of passengers and goods. This is one of the key factors for economic growth. The high costs of railway infrastructure ask for an increased utilization of the existing infrastructure. Attractive railway services can only be offered with more reliable rolling stock and a more reliable infrastructure. However, to keep a high quality standard of operations, smarter methods of timetable construction are indispensable, since existing methods have major shortcomings. The first part of this dissertation, comprising Chapters 1-6, aims at developing a cyclic (or periodic) timetable for a passenger railway system. Three different scenarios are considered and three mixed integer linear programs, combined with heuristics for calculating upper and lower bounds on the optimal value for each scenario, will be developed. The reason of considering a periodic timetable is that it is easy to remember for passengers. The main inputs are the line plan and travel time between and minimum dwell time at each station. The output of each model is an optimal periodic timetable. We try to optimize the quality of service for the railway system by minimizing the length of cycle by which trains are dispatched from their origin. Hence, we consider the cycle length as the primary objective function. Since minimizing travel time is a key factor in measuring service quality, another criterion--total dwell time of the trains--is considered and added to the objective function. The first problem, presented in Chapter 3, has already been published in a scholarly journal (Heydar et al., 2013). This chapter is an extension of the work of Bergmann (1975) and is the simplest part of this research. In this problem, we consider a single-track unidirectional railway line between two major stations with a number of stations in between. Two train types--express and local--are dispatched from the first station in an alternate fashion. The express train stops at no intermediate station, while the local train should make a stop at every intermediate station for a minimum amount of dwell time. A mixed integer linear program is developed in order to minimize the length of the dispatching cycle and minimize the total dwell time of the local train at all stations combined. Constraints include a minimum dwell time for the local train at each station, a maximum total dwell time for the local train, and headway considerations on the main line an in stations. Hundreds of randomly generated problem instances with up to 70 stations are considered and solved to optimality in a reasonable amount of time. Instances of this problem typically have multiple optimal solutions, so we develop a procedure for finding all optimal solutions of this problem. In the second problem, presented in Chapter 4, we present the literature\u27s first mixed integer linear programming model of a cyclic, combined train timetabling and platforming problem which is an extension of the model presented in Chapter 3 and Heydar et al. (2013). The work on this problem has been submitted to a leading transportation journal (Petering et al., 2012). From another perspective, this work can be seen as investigating the capacity of a single track, unidirectional rail line that adheres to a cyclic timetable. In this problem, a set of intermediate stations lies between an origin and destination with one or more parallel sidings at each station. A total of T train types--each with a given starting and finishing point and a set of known intermediate station stops--are dispatched from their respective starting points in cyclic fashion, with one train of each type dispatched per cycle. A mixed integer linear program is developed in order to schedule the train arrivals and departures at the stations and assign trains to tracks (platforms) in the stations so as to minimize the length of the dispatching cycle and/or minimize the total stopping (dwell) time of all train types at all stations combined. Constraints include a minimum dwell time for each train type in each of the stations in which it stops, a maximum total dwell time for each train type, and headway considerations on the main line and on the tracks in the stations. This problem belongs to the class of NP-hard problems. Hundreds of randomly generated and real-world problem instances with 4-35 intermediate stations and 2-11 train types are considered and solved to optimality in a reasonable amount of time using IBM ILOG CPLEX. Chapter 5 expands upon the work in Chapter 4. Here, we present a mixed integer linear program for cyclic train timetabling and routing on a single track, bi-directional rail line. There are T train types and one train of each type is dispatched per cycle. The decisions include the sequencing of the train types on the main line and the assignment of train types to station platforms. Two conflicting objectives--(1) minimizing cycle length (primary objective) and (2) minimizing total train journey time (secondary objective)--are combined into a single weighted sum objective to generate Pareto optimal solutions. Constraints include a minimum stopping time for each train type in each station, a maximum allowed journey time for each train type, and a minimum headway on the main line and on platforms in stations. The MILP considers five aspects of the railway system: (1) bi-directional train travel between stations, (2) trains moving at different speeds on the main line, (3) trains having the option to stop at stations even if they are not required to, (4) more than one siding or platform at a station, and (5) any number of train types. In order to solve large scale instances, various heuristics and exact methods are employed for computing secondary parameters and for finding lower and upper bounds on the primary objective. These heuristics and exact methods are combined with the math model to allow CPLEX 12.4 to find optimal solutions to large problem instances in a reasonable amount of time. The results show that it is sometimes necessary for (1) a train type to stop at a station where stopping is not required or (2) a train type to travel slower than its normal speed in order to minimize timetable cycle time. In the second part of this dissertation, comprising Chapters 7-9, we study a transit-based evacuation problem which is an extension of bus routing problem. This work has been already submitted to a leading transportation journal (Heydar et al., 2014). This paper presents a mathematical model to plan emergencies in a highly populated urban zone where a certain numbers of pedestrians depend on transit for evacuation. The proposed model features a two-level operational framework. The first level operation guides evacuees through urban streets and crosswalks (referred to as the pedestrian network ) to designated pick-up points (e.g., bus stops), and the second level operation properly dispatches and routes a fleet of buses at different depots to those pick-up points and transports evacuees to their destinations or safe places. In this level, the buses are routed through the so-called vehicular network. An integrated mixed integer linear program that can effectively take into account the interactions between the aforementioned two networks is formulated to find the maximal evacuation efficiency in the two networks. Since the large instances of the proposed model are mathematically difficult to solve to optimality, a two-stage heuristic is developed to solve larger instances of the model. Over one hundred numerical examples and runs solved by the heuristic illustrate the effectiveness of the proposed solution method in handling large-scale real-world instances

    Application of product family design for engineered systems in changing market space

    Get PDF
    The focus of this paper is on the design of an engineered system for a changing market space. Due to the dynamic nature of the customer requirements, the specification of product offerings in a particular market may change. Manufacturers need to strategically design their product portfolio in such a way that their profitability is maximized, while deploying the right number of platforms necessary for deriving product variants. Depending on the system architecture, subsystems can be classified into one of the two types: scalar subsystems and modular subsystems. Each subsystem is defined by various parameters, performance criteria, and physical compatibility constraints. The market demand is modeled as a function of selling price and performance criteria. The objective function is formulated as maximization of total profitability for the current and future markets while meeting the required performance criteria. The profitability of an individual unit is the difference between the selling price and cost of that particular unit. The selling price has been expressed as a linear function of system characteristic and performance parameters. The cost of an individual system is the sum of the cost of all the subsystems involved. The cost of an individual subsystem is a function of parameters of that particular subsystem. Further, different types of technology are considered available at different time periods that impacts the switchover cost. The total profitability is further reduced by the platform development cost of the variants. The complete engineered system level problem is formulated as a non-linear programming optimization problem and solved using the non-linear generalized reduced gradient algorithm. The application of the proposed methodology is demonstrated using a case example of an automotive truck family --Abstract, page iv

    Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    Get PDF
    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    A probabilistic analysis of a scheduling problem in the economics of tourism

    Get PDF
    The scheduling problem faced by a firm (or by a government agency) that is responsible for providing transportation to tourists who would like to visit a particular location has received scant theoretical attention in the tourism literature. Therefore, we conduct a probabilistic analysis of the scheduling problem in this paper. Specifically, we first delineate a generic model that accounts for the common features of visits to many locations such as fiords, game parks, lakes, and wildlife reserves. Next, we derive the transportation providing firm's long run expected profit per unit time function. Finally, we show that the optimal frequency with which transportation ought to be provided to tourists is the solution to our firm's long run expected profit maximization problem.
    corecore