7,469 research outputs found

    On the cusp anomalous dimension in the ladder limit of N=4\mathcal N=4 SYM

    Get PDF
    We analyze the cusp anomalous dimension in the (leading) ladder limit of N=4\mathcal N=4 SYM and present new results for its higher-order perturbative expansion. We study two different limits with respect to the cusp angle ϕ\phi. The first is the light-like regime where x=ei ϕ→0x = e^{i\,\phi}\to 0. This limit is characterised by a non-trivial expansion of the cusp anomaly as a sum of powers of log⁥x\log x, where the maximum exponent increases with the loop order. The coefficients of this expansion have remarkable transcendentality features and can be expressed by products of single zeta values. We show that the whole logarithmic expansion is fully captured by a solvable Woods-Saxon like one-dimensional potential. From the exact solution, we extract generating functions for the cusp anomaly as well as for the various specific transcendental structures appearing therein. The second limit that we discuss is the regime of small cusp angle. In this somewhat simpler case, we show how to organise the quantum mechanical perturbation theory in a novel efficient way by means of a suitable all-order Ansatz for the ground state of the associated Schr\"odinger problem. Our perturbative setup allows to systematically derive higher-order perturbative corrections in powers of the cusp angle as explicit non-perturbative functions of the effective coupling. This series approximation is compared with the numerical solution of the Schr\"odinger equation to show that we can achieve very good accuracy over the whole range of coupling and cusp angle. Our results have been obtained by relatively simple techniques. Nevertheless, they provide several non-trivial tests useful to check the application of Quantum Spectral Curve methods to the ladder approximation at non zero ϕ\phi, in the two limits we studied.Comment: 21 pages, 3 figure

    Calibrating the Na\"ive Cornell Model with NRQCD

    Full text link
    Along the years, the Cornell Model has been extraordinarily successful in describing hadronic phenomenology, in particular in physical situations for which an effective theory of the strong interactions such as NRQCD cannot be applied. As a consequence of its achievements, a relevant question is whether its model parameters can somehow be related to fundamental constants of QCD. We shall give a first answer in this article by comparing the predictions of both approaches. Building on results from a previous study on heavy meson spectroscopy, we calibrate the Cornell model employing NRQCD predictions for the lowest-lying bottomonium states up to N3^3LO, in which the bottom mass is varied within a wide range. We find that the Cornell model mass parameter can be identified, within perturbative uncertainties, with the MSR mass at the scale R=1 R = 1\,GeV. This identification holds for any value of αs\alpha_s or the bottom mass, and for all perturbative orders investigated. Furthermore, we show that: a) the "string tension" parameter is independent of the bottom mass, and b) the Coulomb strength Îș\kappa of the Cornell model can be related to the QCD strong coupling constant αs\alpha_s at a characteristic non-relativistic scale. We also show how to remove the u=1/2u=1/2 renormalon of the static QCD potential and sum-up large logs related to the renormalon subtraction by switching to the low-scale, short-distance MSR mass, and using R-evolution. Our R-improved expression for the static potential remains independent of the heavy quark mass value and agrees with lattice QCD results for values of the radius as large as 0.8 0.8\,fm, and with the Cornell model potential at long distances. Finally we show that for moderate values of rr, the R-improved NRQCD and Cornell static potentials are in head-on agreement.Comment: 22 pages, 13 figures, 3 table

    Quadratic Mean Field Games

    Full text link
    Mean field games were introduced independently by J-M. Lasry and P-L. Lions, and by M. Huang, R.P. Malham\'e and P. E. Caines, in order to bring a new approach to optimization problems with a large number of interacting agents. The description of such models split in two parts, one describing the evolution of the density of players in some parameter space, the other the value of a cost functional each player tries to minimize for himself, anticipating on the rational behavior of the others. Quadratic Mean Field Games form a particular class among these systems, in which the dynamics of each player is governed by a controlled Langevin equation with an associated cost functional quadratic in the control parameter. In such cases, there exists a deep relationship with the non-linear Schr\"odinger equation in imaginary time, connexion which lead to effective approximation schemes as well as a better understanding of the behavior of Mean Field Games. The aim of this paper is to serve as an introduction to Quadratic Mean Field Games and their connexion with the non-linear Schr\"odinger equation, providing to physicists a good entry point into this new and exciting field.Comment: 62 pages, 4 figure

    The Dirac equation, the concept of quanta, and the description of interactions in quantum electrodynamics

    Get PDF
    In this article the Dirac equation is used as a guideline to the historical emergence of the concept of quanta, associated with the quantum field. In Pascual Jordan’s approach, electrons as quanta result from the quantization of a classical field described by the Dirac equation. With this quantization procedure – also used for the electromagnetic field – the concept of quanta becomes a central piece in quantum electrodynamics. This does not seem to avoid the apparent impossibility of using the concept of quanta when interacting fields are considered together as a closed system. In this article it is defended that the type of analysis that leads to so drastic conclusions is avoidable if we look beyond the mathematical structure of the theory and take into account the physical ideas inscribed in this mathematical structure. In this case we see that in quantum electrodynamics we are not considering a closed system of interacting fields, what we have is a description of the interactions between distinct fields. In this situation the concept of quanta is central, the Fock space being the natural mathematical structure that permits maintaining the concept of quanta when considering the interaction between the fields
    • 

    corecore