23,817 research outputs found

    Space-time adaptive solution of inverse problems with the discrete adjoint method

    Get PDF
    Adaptivity in both space and time has become the norm for solving problems modeled by partial differential equations. The size of the discretized problem makes uniformly refined grids computationally prohibitive. Adaptive refinement of meshes and time steps allows to capture the phenomena of interest while keeping the cost of a simulation tractable on the current hardware. Many fields in science and engineering require the solution of inverse problems where parameters for a given model are estimated based on available measurement information. In contrast to forward (regular) simulations, inverse problems have not extensively benefited from the adaptive solver technology. Previous research in inverse problems has focused mainly on the continuous approach to calculate sensitivities, and has typically employed fixed time and space meshes in the solution process. Inverse problem solvers that make exclusive use of uniform or static meshes avoid complications such as the differentiation of mesh motion equations, or inconsistencies in the sensitivity equations between subdomains with different refinement levels. However, this comes at the cost of low computational efficiency. More efficient computations are possible through judicious use of adaptive mesh refinement, adaptive time steps, and the discrete adjoint method. This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the intergrid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided for the discontinuous Galerkin (DG) method. The adjoint model development is considerably simplified by decoupling the adaptive mesh refinement mechanism from the forward model solver, and by selectively applying automatic differentiation on individual algorithms. In forward models discontinuous Galerkin discretizations can efficiently handle high orders of accuracy, h/ph/p-refinement, and parallel computation. The analysis reveals that this approach, paired with Runge Kutta time stepping, is well suited for the adaptive solutions of inverse problems. The usefulness of discrete discontinuous Galerkin adjoints is illustrated on a two-dimensional adaptive data assimilation problem

    Parallel-in-space-time, adaptive finite element framework for non-linear parabolic equations

    Get PDF
    We present an adaptive methodology for the solution of (linear and) non-linear time dependent problems that is especially tailored for massively parallel computations. The basic concept is to solve for large blocks of space-time unknowns instead of marching sequentially in time. The methodology is a combination of a computationally efficient implementation of a parallel-in-space time finite element solver coupled with a posteriori space-time error estimates and a parallel mesh generator. While we focus on spatial adaptivity in this work, the methodology enables simultaneous adaptivity in both space and time domains. We explore this basic concept in the context of a variety of time-steppers including Θ-schemes and Backward Difference Formulas. We specifically illustrate this framework with applications involving time dependent linear, quasi-linear and semi-linear diffusion equations. We focus on investigating how the coupled space-time refinement indicators for this class of problems aspect spatial adaptivity. Finally, we show good scaling behavior up to 150,000 processors on the NCSA Blue Waters machine. This conceptually simple methodology enables scaling on next generation multi-core machines by simultaneously solving for large number of time-steps, and reduces computational overhead by locally refining spatial blocks that can track localized features. This methodology also opens up the possibility of efficiently incorporating adjoint equations for error estimators and invers

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    Cyclic division algebras: a tool for space-time coding

    Get PDF
    Multiple antennas at both the transmitter and receiver ends of a wireless digital transmission channel may increase both data rate and reliability. Reliable high rate transmission over such channels can only be achieved through Space–Time coding. Rank and determinant code design criteria have been proposed to enhance diversity and coding gain. The special case of full-diversity criterion requires that the difference of any two distinct codewords has full rank. Extensive work has been done on Space–Time coding, aiming at finding fully diverse codes with high rate. Division algebras have been proposed as a new tool for constructing Space–Time codes, since they are non-commutative algebras that naturally yield linear fully diverse codes. Their algebraic properties can thus be further exploited to improve the design of good codes. The aim of this work is to provide a tutorial introduction to the algebraic tools involved in the design of codes based on cyclic division algebras. The different design criteria involved will be illustrated, including the constellation shaping, the information lossless property, the non-vanishing determinant property, and the diversity multiplexing trade-off. The final target is to give the complete mathematical background underlying the construction of the Golden code and the other Perfect Space–Time block codes

    Space-Time Trade-offs for Stack-Based Algorithms

    Get PDF
    In memory-constrained algorithms we have read-only access to the input, and the number of additional variables is limited. In this paper we introduce the compressed stack technique, a method that allows to transform algorithms whose space bottleneck is a stack into memory-constrained algorithms. Given an algorithm \alg\ that runs in O(n) time using Θ(n)\Theta(n) variables, we can modify it so that it runs in O(n2/s)O(n^2/s) time using a workspace of O(s) variables (for any so(logn)s\in o(\log n)) or O(nlogn/logp)O(n\log n/\log p) time using O(plogn/logp)O(p\log n/\log p) variables (for any 2pn2\leq p\leq n). We also show how the technique can be applied to solve various geometric problems, namely computing the convex hull of a simple polygon, a triangulation of a monotone polygon, the shortest path between two points inside a monotone polygon, 1-dimensional pyramid approximation of a 1-dimensional vector, and the visibility profile of a point inside a simple polygon. Our approach exceeds or matches the best-known results for these problems in constant-workspace models (when they exist), and gives the first trade-off between the size of the workspace and running time. To the best of our knowledge, this is the first general framework for obtaining memory-constrained algorithms

    Space-time least-squares isogeometric method and efficient solver for parabolic problems

    Full text link
    In this paper, we propose a space-time least-squares isogeometric method to solve parabolic evolution problems, well suited for high-degree smooth splines in the space-time domain. We focus on the linear solver and its computational efficiency: thanks to the proposed formulation and to the tensor-product construction of space-time splines, we can design a preconditioner whose application requires the solution of a Sylvester-like equation, which is performed efficiently by the fast diagonalization method. The preconditioner is robust w.r.t. spline degree and mesh size. The computational time required for its application, for a serial execution, is almost proportional to the number of degrees-of-freedom and independent of the polynomial degree. The proposed approach is also well-suited for parallelization.Comment: 29 pages, 8 figure

    Space-time balancing domain decomposition

    Get PDF
    No separate or additional fees are collected for access to or distribution of the work.In this work, we propose two-level space-time domain decomposition preconditioners for parabolic problems discretized using finite elements. They are motivated as an extension to space-time of balancing domain decomposition by constraints preconditioners. The key ingredients to be defined are the subassembled space and operator, the coarse degrees of freedom (DOFs) in which we want to enforce continuity among subdomains at the preconditioner level, and the transfer operator from the subassembled to the original finite element space. With regard to the subassembled operator, a perturbation of the time derivative is needed to end up with a well-posed preconditioner. The set of coarse DOFs includes the time average (at the space-time subdomain) of classical space constraints plus new constraints between consecutive subdomains in time. Numerical experiments show that the proposed schemes are weakly scalable in time, i.e., we can efficiently exploit increasing computational resources to solve more time steps in the same total elapsed time. Further, the scheme is also weakly space-time scalable, since it leads to asymptotically constant iterations when solving larger problems both in space and time. Excellent wall clock time weak scalability is achieved for space-time parallel solvers on some thousands of coresPeer ReviewedPostprint (published version
    corecore