73,310 research outputs found

    Exploring the mirror TBA

    Full text link
    We apply the contour deformation trick to the Thermodynamic Bethe Ansatz equations for the AdS_5 \times S^5 mirror model, and obtain the integral equations determining the energy of two-particle excited states dual to N=4 SYM operators from the sl(2) sector. We show that each state/operator is described by its own set of TBA equations. Moreover, we provide evidence that for each state there are infinitely-many critical values of 't Hooft coupling constant \lambda, and the excited states integral equations have to be modified each time one crosses one of those. In particular, estimation based on the large L asymptotic solution gives \lambda \approx 774 for the first critical value corresponding to the Konishi operator. Our results indicate that the related calculations and conclusions of Gromov, Kazakov and Vieira should be interpreted with caution. The phenomenon we discuss might potentially explain the mismatch between their recent computation of the scaling dimension of the Konishi operator and the one done by Roiban and Tseytlin by using the string theory sigma model.Comment: 69 pages, v2: new "hybrid" equations for YQ-functions, figures and tables are added. Analyticity of Y-system is discussed, v3: published versio

    On the Application of the Incomplete QR Algorithm to the Analysis of Microstrip Antennas

    Get PDF
    In this paper, we provide some insight into the usage of fast, iterative, method-of-moments (MoM) solution of integral equations (IE) describing antennas and other metallic structures immersed in a planar multilayered environment. Based on the form of multilayered media Green's functions, we extract free-space terms, associated with direct rays within the analyzed structure, reducing the number of significant interactions required to describe the rest of MoM matrix. Next, we show that it is possible to construct a hybrid algorithm, where the fast multipole method (FMM) is used to the free-space matrix part, while the reduced rank incomplete QR (iQR) decomposition is applied to the remaining portion of the MoM matrix. This HM-iQR (hybrid multipole - incomplete QR) method is applied to a relatively large (in terms o f the number of unknowns) problem of plane wave scattering by a finite array of rectangular microstrip patches printed on a grounded dielectric slab. Computation results from the new algorithm are compared to literature data and to the results of the pure low rank IE-QR method

    A Hybrid Boundary Element Method for Elliptic Problems with Singularities

    Full text link
    The singularities that arise in elliptic boundary value problems are treated locally by a singular function boundary integral method. This method extracts the leading singular coefficients from a series expansion that describes the local behavior of the singularity. The method is fitted into the framework of the widely used boundary element method (BEM), forming a hybrid technique, with the BEM computing the solution away from the singularity. Results of the hybrid technique are reported for the Motz problem and compared with the results of the standalone BEM and Galerkin/finite element method (GFEM). The comparison is made in terms of the total flux (i.e. the capacitance in the case of electrostatic problems) on the Dirichlet boundary adjacent to the singularity, which is essentially the integral of the normal derivative of the solution. The hybrid method manages to reduce the error in the computed capacitance by a factor of 10, with respect to the BEM and GFEM

    Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus

    Get PDF
    This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus under the assumption that the underlying asset and interest rate both evolve from a stochastic volatility model and a stochastic interest rate model, respectively. Therefore, it integrates the recent developments in the Malliavin calculus for the computation of Greeks: Delta, Vega, and Rho and it extends the method slightly. The main results show that Malliavin calculus allows a running Monte Carlo (MC) algorithm to present numerical implementations and to illustrate its effectiveness. The main advantage of this method is that once the algorithms are constructed, they can be used for numerous types of option, even if their payoff functions are not differentiable.Comment: Published at https://doi.org/10.15559/18-VMSTA100 in the Modern Stochastics: Theory and Applications (https://www.i-journals.org/vtxpp/VMSTA) by VTeX (http://www.vtex.lt/

    Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    Get PDF
    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method
    corecore