366 research outputs found

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Real Coded Mixed Integer Genetic Algorithm for Geometry Optimization of Flight Simulator Mechanism Based on Rotary Stewart Platform

    Get PDF
    Featured Application Low-cost flight simulators with electric rotary actuators and optimized geometry for flight simulation. Designing the motion platform for the flight simulator is closely coupled with the particular aircraft's flight envelope. While in training, the pilot on the motion platform has to experience the same feeling as in the aircraft. That means that flight simulators need to simulate all flight cases and forces acting upon the pilot during flight. Among many existing mechanisms, parallel mechanisms based on the Stewart platform are suitable because they have six degrees of freedom. In this paper, a real coded mixed integer genetic algorithm (RCMIGA) is applied for geometry optimization of the Stewart platform with rotary actuators (6-RUS) to design a mechanism with appropriate physical limitations of workspace and motion performances. The chosen algorithm proved that it can find the best global solution with all imposed constraints. At the same time, the obtained geometry can be manufactured because integer solutions can be mapped to available discrete values. Geometry is defined with a minimum number of parameters that fully define the mechanism with all constraints. These geometric parameters are then optimized to obtain custom-tailored geometry for aircraft flight simulation

    Mechanical design of an experimental parallel robot

    Get PDF
    OSCAR, or Operational Space Controlled Adjustable Robot, is a parallel-actuated manipulator, also known as Stewart Platform or platform manipulator. The apparatus consists of two platforms (base and top) and six prismatic actuators in between. The main advantage of a platform manipulator is the fact that it can out-perform serial manipulators in both load capacity and precision. However, there are disadvantages and weaknesses such as limited mobility. A platform manipulator has reduced workspace compared to serial manipulators. The problem of limited workspace is solved by enabling OSCAR to change its prismatic leg positioning about the base platform. During the course of the research, the writer designed various parts of the platform manipulator to attend to particular needs using different computer-aided design packages. Once the design was completed and rendered feasible, the parts were actually manufactured and assembled. Some parts were designed to incorporate optical encoders. The feed-back information obtained from the encoders can be used to analyze the manipulator\u27s forward kinematics. Since the forward kinematics is solved using matrices, singularities must be avoided at all times. Singularity found in matrix will suggest the jamming of the manipulator

    Reconfigurable kinematics of General Stewart Platform and simulation interface.

    Get PDF

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Inertial stabilization system based on a Gough-Stewart parallel platform

    Get PDF
    The goal of this project is to develop a system able to control the balance of a par- allel platform robot. The project includes 1) the Gough-Stewart parallel robot, created and assembled at IRI 's lab; 2) 6 Dynamixel rotary actuators, to move the platform; 3) and Arduino® UNO electronic board, to control the rotary actuators and to process data provided by 4) an inertia measurement unit MPU-6050 sensor. In this project it is described how the communication between the devices and the electronic board, which acts as the master, is established. It is speci ed what kind, and how, the communication is performed between each device in order to send and receive data. As the controller is implemented on Arduino®, the programming language required is Processing. Given the dimensions of the prototype, the project is not focused on the analysis of the involved forces, but in its kinematics. Therefore, this work also details the algebraic ma- nipulations needed to set the di erent con gurations that the platform demands according to the kinematics of the parallel robot

    Reconfiguration and tool path planning of hexapod machine tools

    Get PDF
    Hexapod machine tools have the potential to achieve increased accuracy, speed, acceleration and rigidity over conventional machines, and are regarded by many researchers as the machine tools of the next generation. However, their small and complex workspace often limits the range of tasks they can perform, and their parallel structure raises many new issues preventing the direct use of conventional tool path planning methods. This dissertation presents an investigation of new reconfiguration and tool path planning methods for enhancing the ability of hexapods to adapt to workspace changes and assisting them in being integrated into the current manufacturing environments. A reconfiguration method which includes the consideration of foot-placement space (FPS) determination and placement parameter identification has been developed. Based on the desired workspace of a hexapod and the motion range of its leg modules, the FPS of a hexapod machine is defined and a construction method of the FPS is presented. An implementation algorithm for the construction method is developed. The equations for identifying the position and orientation of the base joints for the hexapod at a new location are formulated. For the position identification problem, an algorithm based on Dialytic Elimination is derived. Through examples, it is shown that the FPS determination method can provide feasible locations for the feet of the legs to realize the required workspace. It is also shown that these identification equations can be solved through a numerical approach or through Dialytic Elimination using symbolic manipulation. Three dissimilarities between hexapods and five-axis machines are identified and studied to enhance the basic understanding of tool path planning for hexapods. The first significant difference is the existence of an extra degree of freedom (γ angle). The second dissimilarity is that a hexapod has a widely varying inverse Jacobian over the workspace. This leads to the result that a hexapod usually has a nonlinear path when following a straight-line segment over two sampled poses. These factors indicate that the traditional path planning methods should not be used for hexapods without modification. A kinematics-based tool path planning method for hexapod machine tools is proposed to guide the part placement and the determination of γ angle. The algorithms to search for the feasible part locations and γ sets are presented. Three local planning methods for the γ angle are described. It is demonstrated that the method is feasible and is effective in enhancing the performance of the hexapod machine. As the nonlinear error is computationally expensive to evaluate in real time, the measurement of total leg length error is proposed. This measure is proved to be effective in controlling the nonlinear error

    3-Axis and 5-Axis Machining with Stewart Platform

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of a Modified Stewart Platform Manipulator for Misalignment Correction

    Get PDF
    This thesis work is about the design of a modified Stewart platform manipulator for misalignment correction. The common version of the Stewart platform uses six actuators. The traditional Stewart platform of this kind has a moving top plate and a fixed base plate. However, in this research, the modified design of the traditional Stewart platform is studied. It is designed to be an easy connect-disconnect platform that can wrap around different structures with different cross sections and symmetrically designed. It is able to adjust position easily by using four identical but independent linear actuators populated evenly in two parts fastened to the top and bottom base by ball joints with each part been symmetrical to the other. To design two symmetrical parts and an adjustable clamp are a major objective of the thesis. One symmetrical part flipped upside down produces the other. The adjustable clamp was printed in 3D and can be used to align regular structural shapes especially circle of various diameter. To correct the misalignment, a failure study was carried out to determine the two equal but opposite loads required to correct misalignment in two plastic beams. Five loads were applied which showed that the smaller the load, the better the misalignment. This study showed that it is better to fix the base at a location where it does not move. To investigate that the modified Stewart platform can resist structure stiffness, the actuator assembly was analyzed using ANSYS software. The results showed that the deformation and maximum stress is less that the structure stiffness, which proves why the assembly can resist structural stiffness. The results support that the modified Stewart platform can be used for misalignment correction
    corecore